blob: df7e0d09d734e203d6dc2995e40bdf73a15c9e5a [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_ELEMENTWISE_LOGICAL_OPS_H_
#define CAFFE2_OPERATORS_ELEMENTWISE_LOGICAL_OPS_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/elementwise_ops.h"
#include <unordered_set>
namespace caffe2 {
template <class Context>
class WhereOp final : public Operator<Context> {
public:
USE_OPERATOR_FUNCTIONS(Context);
USE_DISPATCH_HELPER;
template <class... Args>
explicit WhereOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(bool, "broadcast_on_rows", enable_broadcast_, 0) {}
bool RunOnDevice() override {
return DispatchHelper<
TensorTypes<float, double, int, long, std::string, bool>>::
call(this, Input(1));
}
template <typename T>
bool DoRunWithType() {
auto& select = Input(0);
auto& left = Input(1);
auto& right = Input(2);
if (enable_broadcast_) {
CAFFE_ENFORCE_EQ(select.dim(), 1);
CAFFE_ENFORCE_EQ(select.size(0), right.size(0));
CAFFE_ENFORCE_EQ(left.sizes(), right.sizes());
} else {
CAFFE_ENFORCE_EQ(select.sizes(), left.sizes());
CAFFE_ENFORCE_EQ(select.sizes(), right.sizes());
}
auto* output = Output(0, left.sizes(), at::dtype<T>());
const bool* select_data = select.template data<bool>();
const T* left_data = left.template data<T>();
const T* right_data = right.template data<T>();
T* output_data = output->template mutable_data<T>();
if (enable_broadcast_) {
size_t block_size = left.size_from_dim(1);
for (const auto i : c10::irange(select.numel())) {
size_t offset = i * block_size;
if (select_data[i]) {
context_.CopyItemsSameDevice(
output->dtype(),
block_size,
left_data + offset,
output_data + offset);
} else {
context_.CopyItemsSameDevice(
output->dtype(),
block_size,
right_data + offset,
output_data + offset);
}
}
} else {
for (const auto i : c10::irange(select.numel())) {
output_data[i] = select_data[i] ? left_data[i] : right_data[i];
}
}
return true;
}
private:
bool enable_broadcast_;
};
class IsMemberOfValueHolder {
std::unordered_set<int32_t> int32_values_;
std::unordered_set<int64_t> int64_values_;
std::unordered_set<bool> bool_values_;
std::unordered_set<std::string> string_values_;
bool has_values_ = false;
public:
template <typename T>
std::unordered_set<T>& get();
template <typename T>
void set(const std::vector<T>& args) {
has_values_ = true;
auto& values = get<T>();
values.insert(args.begin(), args.end());
}
bool has_values() {
return has_values_;
}
};
template <class Context>
class IsMemberOfOp final : public Operator<Context> {
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
static constexpr const char* VALUE_TAG = "value";
public:
using TestableTypes = TensorTypes<int32_t, int64_t, bool, std::string>;
template <class... Args>
explicit IsMemberOfOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {
auto dtype =
static_cast<TensorProto_DataType>(this->template GetSingleArgument<int>(
"dtype", TensorProto_DataType_UNDEFINED));
switch (dtype) {
case TensorProto_DataType_INT32:
values_.set(this->template GetRepeatedArgument<int32_t>(VALUE_TAG));
break;
case TensorProto_DataType_INT64:
values_.set(this->template GetRepeatedArgument<int64_t>(VALUE_TAG));
break;
case TensorProto_DataType_BOOL:
values_.set(this->template GetRepeatedArgument<bool>(VALUE_TAG));
break;
case TensorProto_DataType_STRING:
values_.set(this->template GetRepeatedArgument<std::string>(VALUE_TAG));
break;
case TensorProto_DataType_UNDEFINED:
// If dtype is not provided, values_ will be filled the first time that
// DoRunWithType is called.
break;
default:
CAFFE_THROW("Unexpected 'dtype' argument value: ", dtype);
}
}
virtual ~IsMemberOfOp() noexcept {}
bool RunOnDevice() override {
return DispatchHelper<
TensorTypes<int32_t, int64_t, bool, std::string>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
auto& input = Input(0);
auto* output = Output(0, input.sizes(), at::dtype<bool>());
if (!values_.has_values()) {
values_.set(this->template GetRepeatedArgument<T>(VALUE_TAG));
}
const auto& values = values_.get<T>();
const T* input_data = input.template data<T>();
bool* output_data = output->template mutable_data<bool>();
for (const auto i : c10::irange(input.numel())) {
output_data[i] = values.find(input_data[i]) != values.end();
}
return true;
}
protected:
IsMemberOfValueHolder values_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ELEMENTWISE_LOGICAL_OPS_H_