| #include "caffe2/operators/generate_proposals_op.h" |
| #include "caffe2/operators/generate_proposals_op_util_boxes.h" |
| #include "generate_proposals_op_util_nms.h" |
| |
| namespace caffe2 { |
| |
| namespace { |
| |
| // Compute the 1-d index of a n-dimensional contiguous row-major tensor for |
| // a given n-dimensional index 'index' |
| size_t ComputeStartIndex( |
| const TensorCPU& tensor, |
| const std::vector<int>& index) { |
| TORCH_DCHECK_EQ(index.size(), tensor.dim()); |
| |
| size_t ret = 0; |
| // NOLINTNEXTLINE(clang-diagnostic-sign-compare) |
| for (int i = 0; i < index.size(); i++) { |
| ret += index[i] * tensor.size_from_dim(i + 1); |
| } |
| |
| return ret; |
| } |
| |
| // Get a sub tensor view from 'tensor' using data pointer from 'tensor' |
| template <class T> |
| utils::ConstTensorView<T> GetSubTensorView( |
| const TensorCPU& tensor, |
| int dim0_start_index) { |
| TORCH_DCHECK_EQ(tensor.dtype().itemsize(), sizeof(T)); |
| |
| if (tensor.numel() == 0) { |
| return utils::ConstTensorView<T>(nullptr, {}); |
| } |
| |
| std::vector<int> start_dims(tensor.dim(), 0); |
| start_dims.at(0) = dim0_start_index; |
| auto st_idx = ComputeStartIndex(tensor, start_dims); |
| auto ptr = tensor.data<T>() + st_idx; |
| |
| auto input_dims = tensor.sizes(); |
| std::vector<int> ret_dims(input_dims.begin() + 1, input_dims.end()); |
| |
| utils::ConstTensorView<T> ret(ptr, ret_dims); |
| return ret; |
| } |
| |
| } // namespace |
| |
| namespace utils { |
| |
| ERMatXf ComputeAllAnchors( |
| const TensorCPU& anchors, |
| int height, |
| int width, |
| float feat_stride) { |
| const auto K = height * width; |
| const auto A = anchors.size(0); |
| const auto box_dim = anchors.size(1); |
| CAFFE_ENFORCE(box_dim == 4 || box_dim == 5); |
| |
| ERMatXf shift_x = (ERVecXf::LinSpaced(width, 0.0, width - 1.0) * feat_stride) |
| .replicate(height, 1); |
| ERMatXf shift_y = (EVecXf::LinSpaced(height, 0.0, height - 1.0) * feat_stride) |
| .replicate(1, width); |
| Eigen::MatrixXf shifts(K, box_dim); |
| if (box_dim == 4) { |
| // Upright boxes in [x1, y1, x2, y2] format |
| shifts << ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()), |
| ConstEigenVectorMap<float>(shift_y.data(), shift_y.size()), |
| ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()), |
| ConstEigenVectorMap<float>(shift_y.data(), shift_y.size()); |
| } else { |
| // Rotated boxes in [ctr_x, ctr_y, w, h, angle] format. |
| // Zero shift for width, height and angle. |
| ERMatXf shift_zero = ERMatXf::Constant(height, width, 0.0); |
| shifts << ConstEigenVectorMap<float>(shift_x.data(), shift_x.size()), |
| ConstEigenVectorMap<float>(shift_y.data(), shift_y.size()), |
| ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size()), |
| ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size()), |
| ConstEigenVectorMap<float>(shift_zero.data(), shift_zero.size()); |
| } |
| |
| // Broacast anchors over shifts to enumerate all anchors at all positions |
| // in the (H, W) grid: |
| // - add A anchors of shape (1, A, box_dim) to |
| // - K shifts of shape (K, 1, box_dim) to get |
| // - all shifted anchors of shape (K, A, box_dim) |
| // - reshape to (K*A, box_dim) shifted anchors |
| ConstEigenMatrixMap<float> anchors_vec( |
| anchors.template data<float>(), 1, A * box_dim); |
| // equivalent to python code |
| // all_anchors = ( |
| // self._model.anchors.reshape((1, A, box_dim)) + |
| // shifts.reshape((1, K, box_dim)).transpose((1, 0, 2))) |
| // all_anchors = all_anchors.reshape((K * A, box_dim)) |
| // all_anchors_vec: (K, A * box_dim) |
| ERMatXf all_anchors_vec = |
| anchors_vec.replicate(K, 1) + shifts.rowwise().replicate(A); |
| |
| // use the following to reshape to (K * A, box_dim) |
| // Eigen::Map<const ERMatXf> all_anchors( |
| // all_anchors_vec.data(), K * A, box_dim); |
| |
| return all_anchors_vec; |
| } |
| |
| ERArrXXf ComputeSortedAnchors( |
| const Eigen::Map<const ERArrXXf>& anchors, |
| int height, |
| int width, |
| float feat_stride, |
| const vector<int>& order) { |
| const auto box_dim = anchors.cols(); |
| CAFFE_ENFORCE(box_dim == 4 || box_dim == 5); |
| |
| // Order is flattened in (A, H, W) format. Unravel the indices. |
| const auto& order_AHW = utils::AsEArrXt(order); |
| const auto& order_AH = order_AHW / width; |
| const auto& order_W = order_AHW - order_AH * width; |
| const auto& order_A = order_AH / height; |
| const auto& order_H = order_AH - order_A * height; |
| |
| // Generate shifts for each location in the H * W grid corresponding |
| // to the sorted scores in (A, H, W) order. |
| const auto& shift_x = order_W.cast<float>() * feat_stride; |
| const auto& shift_y = order_H.cast<float>() * feat_stride; |
| Eigen::MatrixXf shifts(order.size(), box_dim); |
| if (box_dim == 4) { |
| // Upright boxes in [x1, y1, x2, y2] format |
| shifts << shift_x, shift_y, shift_x, shift_y; |
| } else { |
| // Rotated boxes in [ctr_x, ctr_y, w, h, angle] format. |
| // Zero shift for width, height and angle. |
| const auto& shift_zero = EArrXf::Constant(order.size(), 0.0); |
| shifts << shift_x, shift_y, shift_zero, shift_zero, shift_zero; |
| } |
| |
| // Apply shifts to the relevant anchors. |
| // Equivalent to python code `all_anchors = self._anchors[order_A] + shifts` |
| ERArrXXf anchors_sorted; |
| utils::GetSubArrayRows(anchors, order_A, &anchors_sorted); |
| const auto& all_anchors_sorted = anchors_sorted + shifts.array(); |
| return all_anchors_sorted; |
| } |
| |
| } // namespace utils |
| |
| template <> |
| void GenerateProposalsOp<CPUContext>::ProposalsForOneImage( |
| const Eigen::Array3f& im_info, |
| const Eigen::Map<const ERArrXXf>& anchors, |
| const utils::ConstTensorView<float>& bbox_deltas_tensor, |
| const utils::ConstTensorView<float>& scores_tensor, |
| ERArrXXf* out_boxes, |
| EArrXf* out_probs) const { |
| const auto& post_nms_topN = rpn_post_nms_topN_; |
| const auto& nms_thresh = rpn_nms_thresh_; |
| const auto& min_size = rpn_min_size_; |
| const int box_dim = static_cast<int>(anchors.cols()); |
| CAFFE_ENFORCE(box_dim == 4 || box_dim == 5); |
| |
| CAFFE_ENFORCE_EQ(bbox_deltas_tensor.ndim(), 3); |
| CAFFE_ENFORCE_EQ(bbox_deltas_tensor.dim(0) % box_dim, 0); |
| auto A = bbox_deltas_tensor.dim(0) / box_dim; |
| auto H = bbox_deltas_tensor.dim(1); |
| auto W = bbox_deltas_tensor.dim(2); |
| auto K = H * W; |
| CAFFE_ENFORCE_EQ(A, anchors.rows()); |
| |
| // scores are (A, H, W) format from conv output. |
| // Maintain the same order without transposing (which is slow) |
| // and compute anchors accordingly. |
| CAFFE_ENFORCE_EQ(scores_tensor.ndim(), 3); |
| CAFFE_ENFORCE_EQ(scores_tensor.dims(), (vector<int>{A, H, W})); |
| Eigen::Map<const EArrXf> scores(scores_tensor.data(), scores_tensor.size()); |
| |
| std::vector<int> order(scores.size()); |
| std::iota(order.begin(), order.end(), 0); |
| if (rpn_pre_nms_topN_ <= 0 || rpn_pre_nms_topN_ >= scores.size()) { |
| // 4. sort all (proposal, score) pairs by score from highest to lowest |
| // 5. take top pre_nms_topN (e.g. 6000) |
| std::stable_sort(order.begin(), order.end(), [&scores](int lhs, int rhs) { |
| return scores[lhs] > scores[rhs]; |
| }); |
| } else { |
| // Avoid sorting possibly large arrays; First partition to get top K |
| // unsorted and then sort just those (~20x faster for 200k scores) |
| std::partial_sort( |
| order.begin(), |
| order.begin() + rpn_pre_nms_topN_, |
| order.end(), |
| [&scores](int lhs, int rhs) { return scores[lhs] > scores[rhs]; }); |
| order.resize(rpn_pre_nms_topN_); |
| } |
| |
| EArrXf scores_sorted; |
| utils::GetSubArray(scores, utils::AsEArrXt(order), &scores_sorted); |
| |
| // bbox_deltas are (A * box_dim, H, W) format from conv output. |
| // Order them based on scores maintaining the same format without |
| // expensive transpose. |
| // Note that order corresponds to (A, H * W) in row-major whereas |
| // bbox_deltas are in (A, box_dim, H * W) in row-major. Hence, we |
| // obtain a sub-view of bbox_deltas for each dim (4 for RPN, 5 for RRPN) |
| // in (A, H * W) with an outer stride of box_dim * H * W. Then we apply |
| // the ordering and filtering for each dim iteratively. |
| ERArrXXf bbox_deltas_sorted(order.size(), box_dim); |
| EArrXf bbox_deltas_per_dim(A * K); |
| EigenOuterStride stride(box_dim * K); |
| for (int j = 0; j < box_dim; ++j) { |
| Eigen::Map<ERMatXf>(bbox_deltas_per_dim.data(), A, K) = |
| Eigen::Map<const ERMatXf, 0, EigenOuterStride>( |
| bbox_deltas_tensor.data() + j * K, A, K, stride); |
| // NOLINTNEXTLINE(clang-diagnostic-sign-compare) |
| for (int i = 0; i < order.size(); ++i) { |
| bbox_deltas_sorted(i, j) = bbox_deltas_per_dim[order[i]]; |
| } |
| } |
| |
| // Compute anchors specific to the ordered and pre-filtered indices |
| // in (A, H, W) format. |
| const auto& all_anchors_sorted = |
| utils::ComputeSortedAnchors(anchors, H, W, feat_stride_, order); |
| |
| // Transform anchors into proposals via bbox transformations |
| static const std::vector<float> bbox_weights{1.0, 1.0, 1.0, 1.0}; |
| auto proposals = utils::bbox_transform( |
| all_anchors_sorted, |
| bbox_deltas_sorted, |
| bbox_weights, |
| utils::BBOX_XFORM_CLIP_DEFAULT, |
| legacy_plus_one_, |
| angle_bound_on_, |
| angle_bound_lo_, |
| angle_bound_hi_); |
| |
| // 2. clip proposals to image (may result in proposals with zero area |
| // that will be removed in the next step) |
| proposals = utils::clip_boxes( |
| // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions) |
| proposals, im_info[0], im_info[1], clip_angle_thresh_, legacy_plus_one_); |
| |
| // 3. remove predicted boxes with either height or width < min_size |
| auto keep = |
| utils::filter_boxes(proposals, min_size, im_info, legacy_plus_one_); |
| TORCH_DCHECK_LE(keep.size(), scores_sorted.size()); |
| |
| // 6. apply loose nms (e.g. threshold = 0.7) |
| // 7. take after_nms_topN (e.g. 300) |
| // 8. return the top proposals (-> RoIs top) |
| // NOLINTNEXTLINE(clang-diagnostic-sign-compare) |
| if (post_nms_topN > 0 && post_nms_topN < keep.size()) { |
| keep = utils::nms_cpu( |
| proposals, |
| scores_sorted, |
| keep, |
| nms_thresh, |
| post_nms_topN, |
| legacy_plus_one_); |
| } else { |
| keep = utils::nms_cpu( |
| proposals, scores_sorted, keep, nms_thresh, -1, legacy_plus_one_); |
| } |
| |
| // Generate outputs |
| utils::GetSubArrayRows(proposals, utils::AsEArrXt(keep), out_boxes); |
| utils::GetSubArray(scores_sorted, utils::AsEArrXt(keep), out_probs); |
| } |
| |
| template <> |
| bool GenerateProposalsOp<CPUContext>::RunOnDevice() { |
| const auto& scores = Input(0); |
| const auto& bbox_deltas = Input(1); |
| const auto& im_info_tensor = Input(2); |
| const auto& anchors_tensor = Input(3); |
| |
| CAFFE_ENFORCE_EQ(scores.dim(), 4, scores.dim()); |
| CAFFE_ENFORCE(scores.template IsType<float>(), scores.dtype().name()); |
| const auto num_images = scores.size(0); |
| const auto A = scores.size(1); |
| const auto height = scores.size(2); |
| const auto width = scores.size(3); |
| const auto box_dim = anchors_tensor.size(1); |
| CAFFE_ENFORCE(box_dim == 4 || box_dim == 5); |
| |
| // bbox_deltas: (num_images, A * box_dim, H, W) |
| CAFFE_ENFORCE_EQ( |
| bbox_deltas.sizes(), |
| (at::ArrayRef<int64_t>{num_images, box_dim * A, height, width})); |
| |
| // im_info_tensor: (num_images, 3), format [height, width, scale; ...] |
| CAFFE_ENFORCE_EQ(im_info_tensor.sizes(), (vector<int64_t>{num_images, 3})); |
| CAFFE_ENFORCE( |
| im_info_tensor.template IsType<float>(), im_info_tensor.dtype().name()); |
| |
| // anchors: (A, box_dim) |
| CAFFE_ENFORCE_EQ(anchors_tensor.sizes(), (vector<int64_t>{A, box_dim})); |
| CAFFE_ENFORCE( |
| anchors_tensor.template IsType<float>(), anchors_tensor.dtype().name()); |
| |
| Eigen::Map<const ERArrXXf> im_info( |
| im_info_tensor.data<float>(), |
| im_info_tensor.size(0), |
| im_info_tensor.size(1)); |
| |
| Eigen::Map<const ERArrXXf> anchors( |
| anchors_tensor.data<float>(), |
| anchors_tensor.size(0), |
| anchors_tensor.size(1)); |
| |
| std::vector<ERArrXXf> im_boxes(num_images); |
| std::vector<EArrXf> im_probs(num_images); |
| for (int i = 0; i < num_images; i++) { |
| auto cur_im_info = im_info.row(i); |
| auto cur_bbox_deltas = GetSubTensorView<float>(bbox_deltas, i); |
| auto cur_scores = GetSubTensorView<float>(scores, i); |
| |
| ERArrXXf& im_i_boxes = im_boxes[i]; |
| EArrXf& im_i_probs = im_probs[i]; |
| ProposalsForOneImage( |
| cur_im_info, |
| anchors, |
| cur_bbox_deltas, |
| cur_scores, |
| &im_i_boxes, |
| &im_i_probs); |
| } |
| |
| int roi_counts = 0; |
| for (int64_t i = 0; i < num_images; i++) { |
| roi_counts += im_boxes[i].rows(); |
| } |
| |
| const int64_t roi_col_count = box_dim + 1; |
| auto *const out_rois = Output(0, {roi_counts, roi_col_count}, at::dtype<float>()); |
| auto *const out_rois_probs = Output(1, {roi_counts}, at::dtype<float>()); |
| |
| if(roi_counts == 0){ |
| return true; |
| } |
| |
| float* out_rois_ptr = out_rois->template mutable_data<float>(); |
| float* out_rois_probs_ptr = out_rois_probs->template mutable_data<float>(); |
| for (int64_t i = 0; i < num_images; i++) { |
| const ERArrXXf& im_i_boxes = im_boxes[i]; |
| const EArrXf& im_i_probs = im_probs[i]; |
| int csz = im_i_boxes.rows(); |
| |
| // write rois |
| Eigen::Map<ERArrXXf> cur_rois(out_rois_ptr, csz, roi_col_count); |
| cur_rois.col(0).setConstant(i); |
| cur_rois.block(0, 1, csz, box_dim) = im_i_boxes; |
| |
| // write rois_probs |
| Eigen::Map<EArrXf>(out_rois_probs_ptr, csz) = im_i_probs; |
| |
| out_rois_ptr += csz * roi_col_count; |
| out_rois_probs_ptr += csz; |
| } |
| |
| return true; |
| } |
| |
| REGISTER_CPU_OPERATOR(GenerateProposals, GenerateProposalsOp<CPUContext>); |
| // For backward compatibility |
| REGISTER_CPU_OPERATOR(GenerateProposalsCPP, GenerateProposalsOp<CPUContext>); |
| |
| OPERATOR_SCHEMA(GenerateProposals) |
| .NumInputs(4) |
| .NumOutputs(2) |
| .SetDoc(R"DOC( |
| Generate bounding box proposals for Faster RCNN. The propoasls are generated for |
| a list of images based on image score 'score', bounding box regression result |
| 'deltas' as well as predefined bounding box shapes 'anchors'. Greedy |
| non-maximum suppression is applied to generate the final bounding boxes. |
| )DOC") |
| .Arg("spatial_scale", "(float) spatial scale") |
| .Arg("pre_nms_topN", "(int) RPN_PRE_NMS_TOP_N") |
| .Arg("post_nms_topN", "(int) RPN_POST_NMS_TOP_N") |
| .Arg("nms_thresh", "(float) RPN_NMS_THRESH") |
| .Arg("min_size", "(float) RPN_MIN_SIZE") |
| .Arg( |
| "angle_bound_on", |
| "bool (default true). If set, for rotated boxes, angle is " |
| "normalized to be within [angle_bound_lo, angle_bound_hi].") |
| .Arg( |
| "angle_bound_lo", |
| "int (default -90 degrees). If set, for rotated boxes, angle is " |
| "normalized to be within [angle_bound_lo, angle_bound_hi].") |
| .Arg( |
| "angle_bound_hi", |
| "int (default 90 degrees). If set, for rotated boxes, angle is " |
| "normalized to be within [angle_bound_lo, angle_bound_hi].") |
| .Arg( |
| "clip_angle_thresh", |
| "float (default 1.0 degrees). For RRPN, clip almost horizontal boxes " |
| "within this threshold of tolerance for backward compatibility. " |
| "Set to negative value for no clipping.") |
| .Input(0, "scores", "Scores from conv layer, size (img_count, A, H, W)") |
| .Input( |
| 1, |
| "bbox_deltas", |
| "Bounding box deltas from conv layer, " |
| "size (img_count, 4 * A, H, W)") |
| .Input( |
| 2, |
| "im_info", |
| "Image info, size (img_count, 3), " |
| "format (height, width, scale)") |
| .Input(3, "anchors", "Bounding box anchors, size (A, 4)") |
| .Output( |
| 0, |
| "rois", |
| "Proposals, size (n x 5), " |
| "format (image_index, x1, y1, x2, y2)") |
| .Output(1, "rois_probs", "scores of proposals, size (n)"); |
| // For backward compatibility |
| OPERATOR_SCHEMA(GenerateProposalsCPP).NumInputs(4).NumOutputs(2); |
| |
| SHOULD_NOT_DO_GRADIENT(GenerateProposals); |
| // For backward compatibility |
| SHOULD_NOT_DO_GRADIENT(GenerateProposalsCPP); |
| |
| } // namespace caffe2 |
| |
| // clang-format off |
| C10_EXPORT_CAFFE2_OP_TO_C10_CPU( |
| GenerateProposals, |
| "_caffe2::GenerateProposals(" |
| "Tensor scores, " |
| "Tensor bbox_deltas, " |
| "Tensor im_info, " |
| "Tensor anchors, " |
| "float spatial_scale, " |
| "int pre_nms_topN, " |
| "int post_nms_topN, " |
| "float nms_thresh, " |
| "float min_size, " |
| "bool angle_bound_on, " |
| "int angle_bound_lo, " |
| "int angle_bound_hi, " |
| "float clip_angle_thresh, " |
| "bool legacy_plus_one" |
| ") -> (Tensor output_0, Tensor output_1)", |
| caffe2::GenerateProposalsOp<caffe2::CPUContext>); |
| // clang-format on |