blob: 292ee3a753c47624feb1b00c892522b9adddd46a [file] [log] [blame]
#include "caffe2/operators/half_float_ops.h"
#include <c10/util/Half.h>
#include "caffe2/utils/cpuid.h"
#ifdef USE_FBGEMM
#include "fbgemm/FbgemmConvert.h"
#endif
namespace caffe2 {
inline void FloatToFloat16_ref(
const float* in,
at::Half* out,
size_t N,
bool do_clip = false) {
if (do_clip) {
constexpr float FP16_MAX = 65504.f;
for (size_t i = 0; i < N; ++i) {
out[i] = std::max(-FP16_MAX, std::min(in[i], FP16_MAX));
}
} else {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
}
inline void Float16ToFloat_ref(const at::Half* in, float* out, size_t N) {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
template <>
bool FloatToHalfOp<CPUContext>::RunOnDevice() {
auto& input = Input(0);
auto* output = Output(0, input.sizes(), at::dtype<at::Half>());
const float* data = input.template data<float>();
at::Half* out = output->template mutable_data<at::Half>();
auto N = input.numel();
#ifdef USE_FBGEMM
// There exists a verion fbgemm::FloatToFloat16_simd which will issue avx-512
// instructions when possible. However, this actually doesn't give perf
// benefits, according to benchmarks on T1/T6. Hence we stick to avx2 versions
// here.
if (GetCpuId().avx2()) {
fbgemm::FloatToFloat16_avx2(
data, reinterpret_cast<fbgemm::float16*>(out), N, clip_);
} else {
FloatToFloat16_ref(data, out, N, clip_);
}
#else
FloatToFloat16_ref(data, out, N, clip_);
#endif
return true;
}
template <>
bool HalfToFloatOp<CPUContext>::RunOnDevice() {
auto& input = Input(0);
auto* output = Output(0, input.sizes(), at::dtype<float>());
const at::Half* data = input.template data<at::Half>();
float* out = output->template mutable_data<float>();
auto N = input.numel();
#ifdef USE_FBGEMM
// Same reasoning of sticking to avx2
if (GetCpuId().avx2()) {
fbgemm::Float16ToFloat_avx2(
reinterpret_cast<const fbgemm::float16*>(data), out, N);
} else {
Float16ToFloat_ref(data, out, N);
}
#else
Float16ToFloat_ref(data, out, N);
#endif
return true;
}
REGISTER_CPU_OPERATOR(FloatToHalf, FloatToHalfOp<CPUContext>);
REGISTER_CPU_OPERATOR(HalfToFloat, HalfToFloatOp<CPUContext>);
OPERATOR_SCHEMA(FloatToHalf)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
const TensorShape& X = in[0];
out.push_back(X);
out[0].set_data_type(TensorProto_DataType_FLOAT16);
return out;
});
OPERATOR_SCHEMA(HalfToFloat)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
const TensorShape& X = in[0];
out.push_back(X);
out[0].set_data_type(TensorProto_DataType_FLOAT);
return out;
});
bool Float16ConstantFillOp::RunOnDevice() {
auto* output = Output(0, shape_, at::dtype<at::Half>());
const float givenValue =
this->template GetSingleArgument<float>("value", 0.0f);
at::Half givenFp16Value = givenValue;
if (output->numel()) {
at::Half* out = output->template mutable_data<at::Half>();
std::fill(out, out + output->numel(), givenFp16Value);
}
return true;
}
template <>
bool Float16UniformFillOp<CPUContext>::RunOnDevice() {
auto* output = Output(0, shape_, at::dtype<at::Half>());
at::Half* out = output->template mutable_data<at::Half>();
// Get a batch row by row and convert
auto leading_dim_sz = output->size(0);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int rowsz = output->numel() / output->size(0);
vector<float> intermediate_data_;
intermediate_data_.resize(rowsz);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (uint64_t i = 0; i < leading_dim_sz; i++) {
math::RandUniform<float, CPUContext>(
rowsz, min_, max_, intermediate_data_.data(), &context_);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (uint64_t j = 0; j < rowsz; j++) {
out[i * rowsz + j] = intermediate_data_[j];
}
}
return true;
}
REGISTER_CPU_OPERATOR(Float16ConstantFill, Float16ConstantFillOp);
REGISTER_CPU_OPERATOR(Float16UniformFill, Float16UniformFillOp<CPUContext>);
OPERATOR_SCHEMA(Float16UniformFill)
.NumInputs(0)
.NumOutputs(1)
.TensorInferenceFunction(Float16FillerTensorInference)
.SetDoc(
"Fills a half float tensor of a specified shape with"
" values from a uniform distribution[min,max]")
.Arg("shape", "Shape of the tensor")
.Arg("min", "Minimim value to generate")
.Arg("max", "Maximum value to generate");
NO_GRADIENT(Float16UniformFill);
OPERATOR_SCHEMA(Float16ConstantFill)
.NumInputs(0)
.NumOutputs(1)
.TensorInferenceFunction(Float16FillerTensorInference)
.Arg("value", "The value for the elements of the output tensor.")
.Arg("shape", "The shape of the output tensor.")
.Output(
0,
"output",
"Output tensor of constant values specified by 'value'");
class GetFloatToHalfGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"HalfToFloat", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(FloatToHalf, GetFloatToHalfGradient);
class GetHalfToFloatGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"FloatToHalf", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(HalfToFloat, GetHalfToFloatGradient);
NO_GRADIENT(Float16ConstantFill);
} // namespace caffe2