blob: 78fd0b9d51337a25f52cc8e08f3f64ba9d1872d5 [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
#define CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
#include <cstdio>
#include <map>
#include <unordered_set>
#include <c10/util/irange.h>
#include <c10/util/string_view.h>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/context.h"
#include "caffe2/core/db.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/load_save_op_util.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
using db::Cursor;
using db::DB;
using db::Transaction;
template <class Context>
class DBExistsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit DBExistsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
ws_(ws),
absolute_path_(
this->template GetSingleArgument<int>("absolute_path", false)),
db_name_(this->template GetSingleArgument<string>("db_name", "")),
db_type_(this->template GetSingleArgument<string>("db_type", "")) {}
bool RunOnDevice() override {
string full_db_name =
absolute_path_ ? db_name_ : (ws_->RootFolder() + "/" + db_name_);
auto* output = Output(0);
output->Resize();
bool* exists = output->template mutable_data<bool>();
*exists = caffe2::db::DBExists(db_type_, full_db_name);
return true;
}
private:
Workspace* ws_;
bool absolute_path_;
std::string db_name_;
std::string db_type_;
};
template <class Context>
class LoadOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit LoadOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
ws_(ws),
absolute_path_(
this->template GetSingleArgument<int>("absolute_path", false)),
add_prefix_(this->template GetSingleArgument<string>("add_prefix", "")),
strip_prefix_(
this->template GetSingleArgument<string>("strip_prefix", "")),
db_name_(this->template GetSingleArgument<string>("db", "")),
db_names_(this->template GetRepeatedArgument<string>("dbs")),
db_type_(this->template GetSingleArgument<string>("db_type", "")),
db_options_(this->template GetSingleArgument<string>("db_options", "")),
keep_device_(this->template GetSingleArgument<int>("keep_device", 0)),
load_all_(this->template GetSingleArgument<int>("load_all", 0)),
allow_incomplete_(
this->template GetSingleArgument<bool>("allow_incomplete", false)),
blob_names_(
this->template GetRepeatedArgument<string>("source_blob_names")),
shape_(this->template GetRepeatedArgument<int64_t>("shape")) {
if (InputSize() == 0) {
CAFFE_ENFORCE_GT(db_type_.size(), 0, "Must specify a db type.");
if (db_names_.empty()) {
CAFFE_ENFORCE_GT(db_name_.size(), 0, "Must specify a db name.");
db_names_.push_back(db_name_);
db_name_ = "";
} else {
std::set<std::string> db_name_set;
for (const string& db_name : db_names_) {
CAFFE_ENFORCE_GT(db_name.size(), 0, "Db name should not be empty.");
CAFFE_ENFORCE(
db_name_set.insert(db_name).second,
"Duplicated db name: ",
db_name);
}
db_name_ = "";
}
}
CAFFE_ENFORCE(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
blob_names_.empty() || blob_names_.size() == OutputSize(),
"Number of output blobs and source_blob_names mismatch.");
CAFFE_ENFORCE(
blob_names_.empty() || strip_prefix_.empty(),
"strip_prefix and source_blob_names are mutually exclusive.");
CAFFE_ENFORCE(
blob_names_.empty() || !load_all_,
"cannot load_all_ while using source_blob_names.");
if (!load_all_) {
// blob_names_ will be filled with ''source blob names'' in file/db
// if argument source_blob_names is not given, then blob_names_ is
// inferred from operator output
if (blob_names_.empty()) {
for (const string& name : operator_def.output()) {
blob_names_.push_back(name);
}
}
int idx = 0;
std::set<std::string> name_set;
for (const string& name : blob_names_) {
CAFFE_ENFORCE(
name_set.insert(name).second,
"Duplicated source blob name: ",
name);
output_indices_[name] = idx++;
}
}
}
void SetCurrentDevice(BlobProto* proto);
bool RunOnDevice() override {
int total_loaded_blobs = 0;
std::unordered_map<string, load_save_op_util::BlobState> blob_states;
if (InputSize() > 0) {
for (const auto i : c10::irange(InputSize())) {
const db::DBReader& reader = this->template Input<db::DBReader>(i);
extract(i, reader.cursor(), &blob_states, &total_loaded_blobs);
}
} else {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto i : c10::irange(db_names_.size())) {
string full_db_name = absolute_path_
? db_names_[i]
: (ws_->RootFolder() + "/" + db_names_[i]);
std::unique_ptr<DB> in_db(
caffe2::db::CreateDB(db_type_, full_db_name, caffe2::db::READ));
if (!db_options_.empty()) {
in_db->SetOptions(db_options_);
}
CAFFE_ENFORCE(
in_db.get(),
"Cannot find db implementation of type ",
db_type_,
" (while trying to open ",
full_db_name,
")");
std::unique_ptr<Cursor> cursor(in_db->NewCursor());
extract(i, cursor.get(), &blob_states, &total_loaded_blobs);
}
}
load_save_op_util::validateBlobStates(blob_states);
// Loaded all the needed blobs.
if (!load_all_ && total_loaded_blobs == OutputSize()) {
VLOG(1) << "Loaded " << total_loaded_blobs << " blobs fully from db(s)";
return true;
}
if (load_all_) {
for (const string& name : this->debug_def().output()) {
CAFFE_ENFORCE(
blob_states.count(name),
"Output blob name ",
name,
" does not exist in the db(s).");
}
return true;
}
// Only loaded a subset of the blobs.
if (allow_incomplete_) {
VLOG(1) << "Loaded " << total_loaded_blobs << " blobs out of "
<< OutputSize() << " blobs from db(s).";
for (const auto& output_index : output_indices_) {
if (!blob_states.count(output_index.first)) {
const auto& blobName = output_index.first;
const auto* blob = ws_->GetBlob(output_index.first);
if (blob == nullptr || blob->GetRaw() == nullptr){
// If blob was not loaded in this op and
// it did not exist in the workspace before,
// remove it.
ws_->RemoveBlob(blobName);
}
}
}
} else {
for (const string& output_name : this->debug_def().output()) {
if (blob_states.count(output_name) == 0) {
LOG(ERROR) << "Failed to load blob: " << output_name;
}
}
CAFFE_THROW(
"Expected to load ",
OutputSize(),
" blobs, got ",
total_loaded_blobs,
" only.\n");
}
return true;
}
private:
void extract(
int db_id,
Cursor* cursor,
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
int* total_loaded_blobs) {
if (load_all_) {
extractAll(db_id, cursor, blob_states, total_loaded_blobs);
} else {
extractFrom(
db_id,
cursor,
OperatorBase::Outputs(),
blob_states,
total_loaded_blobs);
}
}
void extractAll(
int db_id,
Cursor* cursor,
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
int* total_loaded_blobs) {
CAFFE_ENFORCE(cursor, "cursor is not valid");
int loaded_blobs = 0;
for (; cursor->Valid(); cursor->Next()) {
const auto key = load_save_op_util::buildBlobNameFromDbKey(
cursor->key(), strip_prefix_, add_prefix_);
if (key_to_dbid_.count(key) && key_to_dbid_[key] != db_id) {
CAFFE_THROW("Duplicate Key ", key, " is found!\n");
} else {
key_to_dbid_[key] = db_id;
}
BlobProto proto;
CAFFE_ENFORCE(
proto.ParseFromString(cursor->value()), "Couldn't parse Proto");
if (!keep_device_) {
// If we are not keeping the device as the one specified in the
// proto, we will set the current device.
SetCurrentDevice(&proto);
}
Blob* blob = ws_->CreateBlob(key);
load_save_op_util::ProcessBlob(
blob, proto, blob_states, key, &loaded_blobs);
}
*total_loaded_blobs += loaded_blobs;
}
void extractFrom(
int db_id,
Cursor* cursor,
const vector<Blob*>& outputs,
std::unordered_map<string, load_save_op_util::BlobState>* blob_states,
int* total_loaded_blobs) {
CAFFE_ENFORCE(cursor);
int loaded_blobs = 0;
for (; cursor->Valid(); cursor->Next()) {
const auto key = load_save_op_util::buildBlobNameFromDbKey(
cursor->key(), strip_prefix_, add_prefix_);
if (!output_indices_.count(key)) {
VLOG(1) << "Key " << key << " not used. Skipping.";
} else {
if (key_to_dbid_.count(key) && key_to_dbid_[key] != db_id) {
CAFFE_THROW("Duplicate Key ", key, " is found!\n");
} else {
key_to_dbid_[key] = db_id;
}
VLOG(2) << "Deserializing blob " << key;
BlobProto proto;
CAFFE_ENFORCE(proto.ParseFromString(cursor->value()));
if (!keep_device_) {
// If we are not keeping the device as the one specified in the
// proto, we will set the current device.
SetCurrentDevice(&proto);
}
auto blobIndex = output_indices_[key];
Blob* blob = outputs.at(blobIndex);
load_save_op_util::ProcessBlob(
blob, proto, blob_states, key, &loaded_blobs);
if (*total_loaded_blobs + loaded_blobs == OutputSize()) {
break;
}
}
}
*total_loaded_blobs += loaded_blobs;
}
private:
Workspace* ws_;
bool absolute_path_;
string add_prefix_;
string strip_prefix_;
string db_name_;
std::vector<std::string> db_names_;
string db_type_;
std::string db_options_;
bool keep_device_;
bool load_all_;
bool allow_incomplete_;
std::map<string, int> output_indices_;
std::map<string, int> key_to_dbid_;
std::vector<std::string> blob_names_;
std::vector<int64_t> shape_;
};
namespace internal {
class TORCH_API SaveOpImpl {
public:
SaveOpImpl(OperatorBase* op, const OperatorDef& operator_def, Workspace* ws);
bool RunOnDevice();
private:
OperatorBase* operator_;
std::string strip_prefix_;
std::string full_db_name_;
std::string db_type_;
std::string db_options_;
std::vector<std::string> blob_names_;
SerializationOptions options_;
};
} // namespace internal
template <class Context>
class SaveOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit SaveOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws), impl_(this, operator_def, ws) {}
bool RunOnDevice() override {
return impl_.RunOnDevice();
}
private:
internal::SaveOpImpl impl_;
};
template <typename... Ts>
std::string FormatString(const std::string& pattern, Ts... values) {
// Start with an initial buffer size that is probably enough most of the time.
std::string buffer(256, '\0');
auto bytes_written =
snprintf(&buffer[0], buffer.size(), pattern.c_str(), values...);
if (bytes_written < 0) {
throw std::runtime_error("FormatString failed");
}
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (bytes_written > buffer.size()) {
// Our initial buffer size wasn't enough, resize and run again.
buffer.resize(bytes_written + 1);
bytes_written =
snprintf(&buffer[0], buffer.size(), pattern.c_str(), values...);
if (bytes_written < 0) {
throw std::runtime_error("FormatString failed");
}
}
// Truncate the string to the correct size to trim off the nul terminator.
buffer.resize(bytes_written);
return buffer;
}
// CheckpointOp is a wrapper over a SaveFloatTensorOp that basically allows
// flexible naming over iterations.
// The file pattern in db_name should be a format string that can be passed into
// sprintf with an int argument specifying the current iteration. An example:
// "/path/to/my/checkpoint/checkpoint_at_%d.pb"
template <class Context>
class CheckpointOp final : public Operator<Context> {
public:
explicit CheckpointOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
db_pattern_(this->template GetSingleArgument<string>("db", "")),
every_(this->template GetSingleArgument<int>("every", 1)),
ws_(ws),
save_op_def_(operator_def) {
CAFFE_ENFORCE_GT(
db_pattern_.size(), 0, "Must specify a checkpoint file pattern.");
CAFFE_ENFORCE_GT(every_, 0, "Checkpoint interval should be positive.");
if (every_ == 1) {
// Just issue a warning, but it's totally legal so we don't do anything.
LOG(WARNING) << "It seems that we are checkpointting every iteration. "
<< "Is that intended?";
}
save_op_def_.set_type("Save");
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
int64_t iter =
this->template Input<Tensor>(0, CPU).template data<int64_t>()[0];
if (iter % every_ == 0) {
GetMutableArgument("db", true, &save_op_def_)
->set_s(FormatString(db_pattern_, iter));
SaveOp<Context> sub_op(save_op_def_, ws_);
return sub_op.Run();
} else {
return true;
}
}
private:
string db_pattern_;
int every_;
Workspace* ws_;
OperatorDef save_op_def_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LOAD_SAVE_OP_H_