blob: 482ef44ba225d84f1ca0ed5b3f49a3b0059c4c60 [file] [log] [blame]
#include "caffe2/operators/log1p_op.h"
#include "caffe2/utils/eigen_utils.h"
#include <algorithm>
#include <functional>
namespace caffe2 {
template <>
template <typename T>
bool Log1pGradientFunctor<CPUContext>::Forward(
const std::vector<int>& X_dims,
const std::vector<int>& /* dY_dims */,
const T* X,
const T* dY,
T* dX,
CPUContext* /* context */) const {
const int size = std::accumulate(
// NOLINTNEXTLINE(modernize-use-transparent-functors)
X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>());
ConstEigenVectorArrayMap<T> dY_arr(dY, size);
ConstEigenVectorArrayMap<T> X_arr(X, size);
EigenVectorMap<T>(dX, size) = dY_arr / (T(1) + X_arr);
return true;
}
REGISTER_CPU_OPERATOR(
Log1p,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, Log1pFunctor<CPUContext>>);
REGISTER_CPU_OPERATOR(
Log1pGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
Log1pGradientFunctor<CPUContext>>);
OPERATOR_SCHEMA(Log1p)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates Log1p of the given input tensor element-wise. This
operation can be done in an in-place fashion too, by providing the same input
and output blobs.
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/log1p_op.cc
)DOC")
.Input(0, "input", "Input data blob to be operated on.")
.Output(0, "output", "Output data blob with same shape as input")
.InheritOnnxSchema();
OPERATOR_SCHEMA(Log1pGradient)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInput(0);
namespace {
class GetLog1pGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Log1pGradient",
"",
std::vector<std::string>{I(0), GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Log1p, GetLog1pGradient);
} // namespace caffe2