| #include "caffe2/operators/loss_op.h" |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR(AveragedLoss, AveragedLoss<float, CPUContext>); |
| REGISTER_CPU_OPERATOR(AveragedLossGradient, |
| AveragedLossGradient<float, CPUContext>); |
| |
| OPERATOR_SCHEMA(AveragedLoss) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .ScalarType(TensorProto::FLOAT) |
| .SetDoc(R"DOC( |
| The *AveragedLoss* op takes a single 1-D input tensor *input* and returns a single output float value *output*. The output represents the average of the values in *input*. This op is commonly used for averaging losses, hence the name, however it does not exclusively operate on losses. |
| |
| Github Links: |
| |
| - https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.h |
| - https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.cc |
| |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "AveragedLoss", |
| ["input"], |
| ["output"], |
| ) |
| |
| workspace.FeedBlob("input", np.array([8, 10, 12]).astype(np.float32)) |
| print("input:\n", workspace.FetchBlob("input")) |
| |
| workspace.RunOperatorOnce(op) |
| print("output: \n", workspace.FetchBlob("output")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| input: |
| [ 8. 10. 12.] |
| output: |
| 10.0 |
| |
| ``` |
| |
| </details> |
| |
| |
| )DOC") |
| .Input(0, "input", "The input data as Tensor") |
| .Output(0, "output", "The output tensor of size 1 containing the averaged value."); |
| |
| OPERATOR_SCHEMA(AveragedLossGradient).NumInputs(2).NumOutputs(1); |
| |
| class GetAveragedLossGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| "AveragedLossGradient", "", |
| vector<string>{I(0), GO(0)}, |
| vector<string>{GI(0)}); |
| } |
| }; |
| REGISTER_GRADIENT(AveragedLoss, GetAveragedLossGradient); |
| |
| } // namespace caffe2 |