| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/reduction_ops.h" |
| #include "caffe2/utils/conversions.h" |
| |
| #include "caffe2/utils/cub_namespace.cuh" |
| |
| namespace caffe2 { |
| |
| REGISTER_CUDA_OPERATOR(SumElements, SumElementsOp<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(SumElementsInt, SumElementsIntOp<int, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(SumSqrElements, SumSqrElementsOp<CUDAContext>); |
| REGISTER_CUDA_OPERATOR(RowwiseMax, MaxReductionOp<float, CUDAContext, true>); |
| REGISTER_CUDA_OPERATOR(ColwiseMax, MaxReductionOp<float, CUDAContext, false>); |
| REGISTER_CUDA_OPERATOR( |
| RowwiseMaxGradient, |
| MaxReductionGradientOp<float, CUDAContext, true>) |
| REGISTER_CUDA_OPERATOR( |
| ColwiseMaxGradient, |
| MaxReductionGradientOp<float, CUDAContext, false>) |
| |
| REGISTER_CUDA_OPERATOR( |
| SumElementsGradient, |
| SumElementsGradientOp<float, CUDAContext>); |
| |
| template <typename T> |
| __global__ void |
| SumElementsGradientKernel(bool average, const int N, const T* dY, T* dX) { |
| const T value = average ? (*dY) / N : *dY; |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = value; |
| } |
| } |
| |
| __global__ void rowwise_max_gradient_kernel( |
| const int batch_size, |
| const int M, |
| const int N, |
| const float* X, |
| const float* Y, |
| const float* dY, |
| float* dX) { |
| const int input_size = M * N; |
| CUDA_1D_KERNEL_LOOP(i, batch_size * M * N) { |
| const int b_i = i / input_size; |
| const int b_n = i / input_size / N; |
| const int y_index = b_i * M + b_n; |
| if (X[i] == Y[y_index]) { |
| dX[i] = dY[y_index]; |
| } else { |
| dX[i] = 0.0; |
| } |
| } |
| } |
| |
| template <> |
| bool SumSqrElementsOp<CUDAContext>::RunOnDevice() { |
| return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0)); |
| } |
| |
| |
| __global__ void colwise_max_gradient_kernel( |
| const int batch_size, |
| const int M, |
| const int N, |
| const float* X, |
| const float* Y, |
| const float* dY, |
| float* dX) { |
| const int input_size = M * N; |
| CUDA_1D_KERNEL_LOOP(i, batch_size * M * N) { |
| const int b_i = i / input_size; |
| const int b_n = i % input_size % N; |
| const int y_index = b_i * N + b_n; |
| if (X[i] == Y[y_index]) { |
| dX[i] = dY[y_index]; |
| } else { |
| dX[i] = 0.0; |
| } |
| } |
| } |
| |
| template <> |
| bool SumElementsGradientOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| auto& dY = Input(1); |
| TORCH_DCHECK_EQ(dY.numel(), 1); |
| |
| auto* dX = Output(0, X.sizes(), at::dtype<float>()); |
| SumElementsGradientKernel<float> |
| <<<CAFFE_GET_BLOCKS(X.numel()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| average_, |
| X.numel(), |
| dY.data<float>(), |
| dX->template mutable_data<float>()); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| template <typename T, class Context, bool ROWWISE> |
| bool MaxReductionGradientOp<T, Context, ROWWISE>::RunOnDevice() { |
| auto& X = Input(0); |
| auto& Y = Input(1); |
| auto& dY = Input(2); |
| |
| auto* dX = Output(0, X.sizes(), at::dtype<T>()); |
| |
| CAFFE_ENFORCE_EQ(X.dim(), 3); |
| |
| const int batch_size = X.dim32(0); |
| const int M = X.dim32(1); |
| const int N = X.dim32(2); |
| |
| const T* Xdata = X.template data<T>(); |
| const T* Ydata = Y.template data<T>(); |
| const T* dYdata = dY.template data<T>(); |
| T* dXdata = dX->template mutable_data<T>(); |
| |
| const int input_size = M * N; |
| if (ROWWISE) { |
| rowwise_max_gradient_kernel<<< |
| CAFFE_GET_BLOCKS(batch_size * input_size), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| batch_size, M, N, Xdata, Ydata, dYdata, dXdata); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } else { |
| colwise_max_gradient_kernel<<< |
| CAFFE_GET_BLOCKS(batch_size * input_size), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| batch_size, M, N, Xdata, Ydata, dYdata, dXdata); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| return true; |
| } |
| |
| } // namespace caffe2 |