blob: faf0aa3cff684d16d835fe73ad99138cc6b1d885 [file] [log] [blame]
#include "caffe2/operators/sequence_ops.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
vector<TensorShape> TensorInferenceForAddPadding(
const OperatorDef& def,
const vector<TensorShape>& in) {
ArgumentHelper helper(def);
const int padding_width = helper.GetSingleArgument<int>("padding_width", 1);
const int end_padding_width = helper.GetSingleArgument<int>("end_padding_width", padding_width);
CAFFE_ENFORCE_GT(in.size(), 0);
CAFFE_ENFORCE_GE(in[0].dims_size(), 1);
if (in.size() > 1) {
CAFFE_ENFORCE_EQ(in[1].dims_size(), 1);
}
const auto num_paddings = (in.size() == 1 ? 1 : in[1].dims(0));
vector<int> out_shape(in[0].dims().begin(), in[0].dims().end());
out_shape[0] += (padding_width + end_padding_width) * num_paddings;
if (def.output_size() == 1) {
return vector<TensorShape>{CreateTensorShape(out_shape, in[0].data_type())};
} else {
return vector<TensorShape>{
CreateTensorShape(out_shape, in[0].data_type()),
CreateTensorShape(vector<int>(1, num_paddings), TensorProto::INT32)};
}
}
template <>
template <typename T>
void GatherPaddingOp<CPUContext>::GatherPadding(
const int outer_size,
const int lengths_size,
const int block_size,
const int pad_width,
const T* in_ptr,
const int* lengths_ptr,
T* padding_start_ptr,
T* padding_end_ptr) {
CAFFE_ENFORCE(
(!std::is_same<bool, T>::value),
"GatherPadding should not be executed on an input of type bool, as "
"addition is not properly defined with booleans.");
int64_t total_length = 0;
for (int i = 0; i < lengths_size; ++i) {
// check total length consistency
const auto length = lengths_ptr[i];
total_length += length;
CAFFE_ENFORCE_LE(total_length, outer_size);
// accumulate start paddings
for (int j = 0; j < startPaddingWidth_; ++j) {
for (int k = 0; k < block_size; ++k) {
// Note: MSVC warns about unsafe use of type bool in operation.
// This is now guarded by a CAFFE_ENFORCE so we can suppress it.
#pragma warning(suppress: 4804)
padding_start_ptr[k] += in_ptr[k];
}
in_ptr += block_size;
}
in_ptr += block_size * (length - pad_width);
// accumulate end paddings
for (int j = 0; j < endPaddingWidth_; ++j) {
for (int k = 0; k < block_size; ++k) {
#pragma warning(suppress: 4804)
padding_end_ptr[k] += in_ptr[k];
}
in_ptr += block_size;
}
}
}
template <>
template <typename T>
bool RemovePaddingOp<CPUContext>::DoRunWithType() {
const auto& in = Input(0);
CAFFE_ENFORCE_GE(in.dim(), 1);
const int32_t outer_size = in.sizes()[0];
const auto block_size = std::accumulate(
// NOLINTNEXTLINE(modernize-use-transparent-functors)
in.sizes().begin() + 1, in.sizes().end(), 1, std::multiplies<int64_t>());
const auto pad_width = startPaddingWidth_ + endPaddingWidth_;
// if no lengths is provided, assume it is a single full-span entry
const int32_t* lengths_ptr = &outer_size;
int64_t lengths_size = 1;
if (InputSize() > 1) {
const auto& lengths = Input(1);
lengths_ptr = lengths.data<int32_t>();
lengths_size = lengths.numel();
}
auto out_dims = in.sizes().vec();
out_dims[0] -= pad_width * lengths_size;
auto* out = Output(0, std::move(out_dims), at::dtype<T>());
const auto* in_ptr = in.template data<T>();
auto* out_ptr = out->template mutable_data<T>();
int64_t total_length = 0;
for (int i = 0; i < lengths_size; ++i) {
// check that total length is consistent
const auto length = lengths_ptr[i];
total_length += length;
CAFFE_ENFORCE_LE(total_length, outer_size);
std::copy(
in_ptr + block_size * startPaddingWidth_,
in_ptr + block_size * (length - endPaddingWidth_),
out_ptr);
in_ptr += block_size * length;
out_ptr += block_size * (length - pad_width);
}
if (OutputSize() == 1) {
return true;
}
auto* lengths_out = Output(1, {lengths_size}, at::dtype<int32_t>());
std::transform(
lengths_ptr,
lengths_ptr + lengths_size,
lengths_out->template mutable_data<int32_t>(),
[pad_width](int32_t x) { return x - pad_width; });
return true;
}
template <>
template <typename T>
bool AddPaddingOp<CPUContext>::MakePadding(
const T* in_ptr,
T* out_ptr,
const int32_t* lengths_ptr,
int32_t lengths_size,
int32_t outer_size,
const T* padding_start_ptr,
const T* padding_end_ptr,
int64_t block_size) {
if (!lengths_ptr) {
lengths_ptr = &outer_size;
}
int64_t total_length = 0;
for (int i = 0; i < lengths_size; ++i) {
// check that total length is consistent
const auto length = lengths_ptr[i];
total_length += length;
CAFFE_ENFORCE_LE(total_length, outer_size);
// copy padding before
if (!padding_start_ptr) {
memset(out_ptr, 0, block_size * startPaddingWidth_ * sizeof(T));
out_ptr += block_size * startPaddingWidth_;
} else {
for (int j = 0; j < startPaddingWidth_; ++j) {
std::copy(padding_start_ptr, padding_start_ptr + block_size, out_ptr);
out_ptr += block_size;
}
}
// copy payload
const auto num_elems = block_size * length;
std::copy(in_ptr, in_ptr + num_elems, out_ptr);
in_ptr += num_elems;
out_ptr += num_elems;
// copy padding after
if (!padding_end_ptr) {
memset(out_ptr, 0, block_size * endPaddingWidth_ * sizeof(T));
out_ptr += block_size * endPaddingWidth_;
} else {
for (int j = 0; j < endPaddingWidth_; ++j) {
std::copy(padding_end_ptr, padding_end_ptr + block_size, out_ptr);
out_ptr += block_size;
}
}
}
if (OutputSize() == 1) {
return true;
}
auto* lengths_out = Output(1, {lengths_size}, at::dtype<int32_t>());
const auto pad_width = startPaddingWidth_ + endPaddingWidth_;
std::transform(
lengths_ptr,
lengths_ptr + lengths_size,
lengths_out->template mutable_data<int32_t>(),
[pad_width](int32_t x) { return x + pad_width; });
return true;
}
template <>
bool PadEmptySamplesOp<CPUContext>::RunOnDevice() {
auto& lengths = Input(0);
auto* lengthsPtr = lengths.template data<int32_t>();
CAFFE_ENFORCE(lengths.dim() == 1, "LENGTH should be 1-D");
CAFFE_ENFORCE(InputSize() >= 1, "Input size must be no less than 1");
int needPadding = 0;
int sumLen = 0;
for (int i = 0; i < lengths.numel(); ++i) {
if (lengthsPtr[i] == 0) {
needPadding++;
}
sumLen += lengthsPtr[i];
}
auto* out_lengths = Output(0, {lengths.numel()}, at::dtype<int32_t>());
auto* outLengthsPtr = out_lengths->template mutable_data<int32_t>();
for (int i = 0; i < lengths.numel(); ++i) {
if (lengthsPtr[i] == 0) {
outLengthsPtr[i] = 1;
} else {
outLengthsPtr[i] = lengthsPtr[i];
}
}
for (int k = 0; k < InputSize() - 1; k++) {
auto& features = Input(1 + k);
CAFFE_ENFORCE(features.dim() >= 1, "FEATURE should at least 1-D");
CAFFE_ENFORCE(
features.size(0) == sumLen, "FEATURE and LENGTH should be consistent");
const auto block_size = features.size_from_dim(1);
auto* out_features = Output(1 + k);
auto outDim = features.sizes().vec();
outDim.at(0) += needPadding;
out_features->Resize(outDim);
auto dst =
static_cast<char*>(out_features->raw_mutable_data(features.dtype()));
auto src_base = static_cast<const char*>(features.raw_data());
// copy data and add padding index as zero
Tensor zero{CPU};
zero.Resize(block_size);
auto zeroPtr = static_cast<char*>(zero.raw_mutable_data(features.dtype()));
// TODO Handle other composite types, such as vector<...>
if (!features.dtype().Match<std::string>()) {
memset(zeroPtr, 0, zero.nbytes());
}
int start_dest = 0;
int start_src = 0;
for (int i = 0; i < lengths.numel(); ++i) {
if (lengthsPtr[i] == 0) {
context_.CopyItemsSameDevice(
features.dtype(),
block_size,
zeroPtr,
dst + start_dest * features.dtype().itemsize());
start_dest += block_size;
} else {
auto src = src_base + start_src * features.dtype().itemsize();
context_.CopyItemsSameDevice(
features.dtype(),
lengthsPtr[i] * block_size,
src,
dst + start_dest * features.dtype().itemsize());
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
start_src += lengthsPtr[i] * block_size;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
start_dest += lengthsPtr[i] * block_size;
}
}
}
return true;
}
REGISTER_CPU_OPERATOR(AddPadding, AddPaddingOp<CPUContext>);
REGISTER_CPU_OPERATOR(RemovePadding, RemovePaddingOp<CPUContext>);
REGISTER_CPU_OPERATOR(GatherPadding, GatherPaddingOp<CPUContext>);
REGISTER_CPU_OPERATOR(PadEmptySamples, PadEmptySamplesOp<CPUContext>);
struct GetAddPaddingGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
// whether to provide lengths as input to gradient
vector<std::string> g_inputs{GO(0)};
if (Def().input_size() > 1) {
CAFFE_ENFORCE(Def().output_size() > 1);
g_inputs.push_back(O(1));
}
vector<OperatorDef> ops;
// gradient on the data
ops.push_back(CreateOperatorDef(
"RemovePadding", "", g_inputs, vector<string>{GI(0)}));
// gradient on the start_padding (and end_padding)
if (Def().input_size() >= 3) {
std::vector<string> padding_grads{GI(2)};
if (Def().input_size() == 4) {
padding_grads.push_back(GI(3));
}
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto g_inputs2 = g_inputs;
ops.push_back(
CreateOperatorDef("GatherPadding", "", g_inputs2, padding_grads));
}
return ops;
}
};
REGISTER_GRADIENT(AddPadding, GetAddPaddingGradient);
struct GetRemovePaddingGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
// whether to provide lengths as input to gradient
vector<std::string> g_inputs{GO(0)};
if (Def().input_size() > 1) {
CAFFE_ENFORCE(Def().output_size() > 1);
g_inputs.push_back(O(1));
}
return SingleGradientDef("AddPadding", "", g_inputs, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(RemovePadding, GetRemovePaddingGradient);
OPERATOR_SCHEMA(AddPadding)
.NumInputs(1, 4)
.NumOutputs(1, 2)
.TensorInferenceFunction(
OpSchema::NeedsAllInputShapes(TensorInferenceForAddPadding))
.SetDoc(R"DOC(
Given a partitioned tensor $T<N, D_1, ..., D_n>$, where the partitions are
defined as ranges on its outer-most (slowest varying) dimension $N$,
return a tensor $T<(N + 2 * padding\_width), D_1, ..., D_n>$ with paddings
added to the start and end of each range.
Optionally, different paddings can be provided for beginning and end.
Paddings provided must be a tensor $T<D_1, ..., D_n>$. If no padding is
provided, add zero padding. If no lengths vector is provided, add padding
only once, at the start and end of data.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sequence_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"AddPadding",
["X", "lengths"],
["Y", "lengths_out"],
padding_width=1
)
workspace.FeedBlob("X", (np.random.rand(3,2,2).astype(np.float32)))
workspace.FeedBlob("lengths", np.array([3]).astype(np.int32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
print("lengths_out:", workspace.FetchBlob("lengths_out"))
```
**Result**
```
X: [[[0.2531572 0.4588472 ]
[0.45140603 0.61161053]]
[[0.92500854 0.8045306 ]
[0.03356671 0.30233648]]
[[0.4660227 0.6287745 ]
[0.79372746 0.08609265]]]
Y: [[[0. 0. ]
[0. 0. ]]
[[0.2531572 0.4588472 ]
[0.45140603 0.61161053]]
[[0.92500854 0.8045306 ]
[0.03356671 0.30233648]]
[[0.4660227 0.6287745 ]
[0.79372746 0.08609265]]
[[0. 0. ]
[0. 0. ]]]
lengths_out: [5]
```
</details>
)DOC")
.Arg(
"padding_width",
"*(type: int)* Number of copies of padding to add around each range.")
.Arg(
"end_padding_width",
"*(type: int)* [OPTIONAL] Specifies a different end-padding width. If "
"this is not set, will use same as `padding_width`.")
.Input(
0,
"data_in",
"*(type: Tensor)* Input data ($T<N, D_1, ..., D_n>$).")
.Input(
1,
"lengths",
"*(type: Tensor`<int>`)* Number of elements in each range. "
"sum(lengths) = N.")
.Input(
2,
"start_padding",
"*(type: Tensor`<int>`)* [OPTIONAL] Padding data for range start "
"($T<D_1, ..., D_n>$).")
.Input(
3,
"end_padding",
"*(type: Tensor`<int>`)* [OPTIONAL] Padding for range end. If not "
"provided, `start_padding` is used ($T<D_1, ..., D_n>$).")
.Output(
0,
"data_out",
"*(type: Tensor)* Padded data tensor ($T<N + 2*padding_width, "
"D_1, ..., D_n>$).")
.Output(
1,
"lengths_out",
"*(type: Tensor`<int>`)* [OPTIONAL] Lengths for each padded range.");
OPERATOR_SCHEMA(RemovePadding)
.NumInputs(1, 2)
.NumOutputs(1, 2)
.SetDoc(R"DOC(
Remove padding around the edges of each segment of the input data. This is the
reverse operation of **AddPadding**, and uses the same arguments and conventions
for input and output data format.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sequence_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
addpad_op = core.CreateOperator(
"AddPadding",
["X", "lengths_add"],
["Y", "lengths_out_add"],
padding_width=1
)
rmpad_op = core.CreateOperator(
"RemovePadding",
["Y", "lengths_rm"],
["Z", "lengths_out_rm"],
padding_width=1
)
workspace.FeedBlob("X", (np.random.randint(20, size=(3,5))))
workspace.FeedBlob("lengths_add", np.array([3]).astype(np.int32))
workspace.FeedBlob("lengths_rm", np.array([5]).astype(np.int32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(addpad_op)
print("Y:", workspace.FetchBlob("Y"))
print("lengths_out_add:", workspace.FetchBlob("lengths_out_add"))
workspace.RunOperatorOnce(rmpad_op)
print("Z:", workspace.FetchBlob("Z"))
print("lengths_out_rm:", workspace.FetchBlob("lengths_out_rm"))
```
**Result**
```
X: [[17 19 1 9 1]
[19 3 5 19 1]
[16 0 0 0 4]]
Y: [[ 0 0 0 0 0]
[17 19 1 9 1]
[19 3 5 19 1]
[16 0 0 0 4]
[ 0 0 0 0 0]]
lengths_out_add: [5]
Z: [[17 19 1 9 1]
[19 3 5 19 1]
[16 0 0 0 4]]
lengths_out_rm: [3]
```
</details>
)DOC")
.Arg(
"padding_width",
"*(type: int)* Outer-size of padding to remove around each range.")
.Arg(
"end_padding_width",
"*(type: int)* [OPTIONAL] Specifies a different end-padding width. "
"If this is not set, will use same as `padding_width`.")
.Input(
0,
"data_in",
"Input tensor ($T<N, D_1, ..., D_n>$).")
.Input(
1,
"lengths",
"*(type: Tensor`<int>`)* Number of elements in each range. "
"sum(lengths) = N. If not provided, considers all data as a single "
"segment.")
.Output(
0,
"data_out",
"*(type: Tensor)* Padded data tensor "
"($T<N + 2*padding_width, D_1, ..., D_n>$).")
.Output(
1,
"lengths_out",
"*(type: Tensor`<int>`)* [OPTIONAL] Lengths for each padded range.");
OPERATOR_SCHEMA(GatherPadding)
.NumInputs(2)
.NumOutputs(1, 2)
.SetDoc(R"DOC(
Gather the sum of start and end paddings in a padded input sequence. Used in
order to compute the gradients of AddPadding w.r.t the padding tensors.
)DOC")
.Arg("padding_width", "Outer-size of padding present around each range.")
.Arg(
"end_padding_width",
"(Optional) Specifies a different end-padding width.")
.Input(0, "data_in", "T<N, D1..., Dn> Padded input data")
.Input(
1,
"lengths",
"(i64) Num of elements in each range. sum(lengths) = N. "
"If not provided, considers all data as a single segment.")
.Output(
0,
"padding_sum",
"Sum of all start paddings, or of all "
"paddings if end_padding_sum is not provided.")
.Output(
1,
"end_padding_sum",
"T<D1..., Dn> Sum of all end paddings, if provided.");
OPERATOR_SCHEMA(PadEmptySamples)
.NumInputs(1, INT_MAX)
.NumOutputs(1, INT_MAX)
.SetDoc(R"DOC(
Pad empty field given lengths and index features,
Input(0) is a blob pointing to the lengths of samples in one batch,
[Input(1),... Input(num_fields)] a list of tensors containing the data for
each field of the features.
PadEmptySamples is thread safe.
)DOC")
.Input(0, "lengths", "A blob containing a pointer to the lengths.")
.Output(
0,
"out_lengths",
"Tensor containing lengths with empty sample padded.");
} // namespace caffe2