blob: c557ebfc9536ff330f1bb2322fabdcc64b66666b [file] [log] [blame]
#!/usr/bin/env python3
import string
import argparse
import numpy as np
from caffe2.python.model_helper import ModelHelper
from caffe2.python.predictor import mobile_exporter
from caffe2.python import core, workspace, brew, utils
def parse_kwarg(kwarg_str):
key, value = map(string.strip, kwarg_str.split("=", 1))
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
pass
return key, value
def main(args):
# User defined keyword arguments
kwargs = {"order": "NCHW"}
kwargs.update(dict(args.kwargs))
model = ModelHelper(name=args.benchmark_name)
op_type = args.operator # assumes a brew type op name
input_name = args.input_name
output_name = args.output_name
iters = int(args.iters)
for i in range(iters):
input_blob_name = input_name + (str(i) if i > 0 and args.chain else '')
output_blob_name = output_name + str(i + 1)
add_op = getattr(brew, op_type)
add_op(model, input_blob_name, output_blob_name, **kwargs)
if args.chain:
input_name, output_name = output_name, input_name
workspace.RunNetOnce(model.param_init_net)
extra_init_net_ops = []
def make_blob_on_context(blob_name, blob_data, context):
if context.upper() != "CPU":
blob_name_modified = "{}_CPU".format(blob_name)
else: # CPU case is simple
blob_name_modified = blob_name
fill_op = core.CreateOperator(
"GivenTensorFill", [], [blob_name_modified],
arg=[
utils.MakeArgument("shape", blob_data.shape),
utils.MakeArgument("values", blob_data)
]
)
extra_init_net_ops.append(fill_op)
# We need to create CPU blobs and add some copy operations in
# the init_net
if context.upper() == "OPENGL":
copy_op = core.CreateOperator("CopyToOpenGL", [blob_name_modified],
[blob_name])
extra_init_net_ops.append(copy_op)
for unparsed_blob in args.blob:
name, unparsed_dims = unparsed_blob.split('=')
dims = [int(d) for d in unparsed_dims.split(',')]
np_input = np.random.rand(*dims).astype(np.float32)
make_blob_on_context(name, np_input, args.context)
init_net, predict_net = mobile_exporter.Export(
workspace, model.net, model.params
)
init_net.op.extend(extra_init_net_ops)
# Handle manual rewrite
if args.context.upper() == "OPENGL":
old_ops = [op for op in predict_net.op]
del predict_net.op[:]
for op in old_ops:
op.type = 'OpenGL{}'.format(op.type)
predict_net.op.extend(old_ops)
if args.debug:
print("init_net:")
for op in init_net.op:
print(" ", op.type, op.input, "-->", op.output)
print("predict_net:")
for op in predict_net.op:
print(" ", op.type, op.input, "-->", op.output)
with open(args.predict_net, 'wb') as f:
f.write(predict_net.SerializeToString())
with open(args.init_net, 'wb') as f:
f.write(init_net.SerializeToString())
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Utility to generate Caffe2 benchmark models.")
parser.add_argument("operator", help="Caffe2 operator to benchmark.")
parser.add_argument("-b", "--blob",
help="Instantiate a blob --blob name=dim1,dim2,dim3",
action='append')
parser.add_argument("--context", help="Context to run on.", default="CPU")
parser.add_argument("--kwargs", help="kwargs to pass to operator.",
nargs="*", type=parse_kwarg, default=[])
parser.add_argument("--init_net", help="Output initialization net.",
default="init_net.pb")
parser.add_argument("--predict_net", help="Output prediction net.",
default="predict_net.pb")
parser.add_argument("--benchmark_name",
help="Name of the benchmark network",
default="benchmark")
parser.add_argument("--input_name", help="Name of the input blob.",
default="data")
parser.add_argument("--output_name", help="Name of the output blob.",
default="output")
parser.add_argument("--iters",
help="Number of iterations to run the operator.",
default="1")
parser.add_argument("-d", "--debug", help="Print debug information.",
action='store_true')
parser.add_argument("-c", "--chain",
help="Chain ops together (create data dependencies)",
action='store_true')
args = parser.parse_args()
main(args)