blob: d32def6841c3e68fa9216d91048f995b856f6e66 [file] [log] [blame]
import argparse
import numpy as np
from caffe2.python import core, workspace
def benchmark_concat(num_inputs, input_dim, axis, add_axis, iterations):
input_names = [f"input{i}" for i in range(num_inputs)]
for n in input_names:
workspace.FeedBlob(n, np.random.randn(*input_dim).astype(np.float32))
net = core.Net("benchmark_net")
net.Concat(input_names, ["output", "split_info"], axis=axis, add_axis=add_axis)
workspace.CreateNet(net)
runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True)
print(f"{num_inputs * np.prod(input_dim) * 4 / runtimes[1] / 1e6} GB/s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="minimal benchmark for concat.")
parser.add_argument("--num_inputs", type=int, default=2)
parser.add_argument("--input_dim", nargs="+", type=int, required=True)
parser.add_argument("--axis", type=int, default=-1)
parser.add_argument("--add_axis", type=int, default=0)
parser.add_argument("--iterations", type=int, default=64)
args, extra_args = parser.parse_known_args()
core.GlobalInit(["python"] + extra_args)
benchmark_concat(
args.num_inputs, args.input_dim, args.axis, args.add_axis, args.iterations
)