| import argparse |
| |
| import numpy as np |
| from caffe2.python import core, workspace |
| |
| |
| def benchmark_concat(num_inputs, input_dim, axis, add_axis, iterations): |
| input_names = [f"input{i}" for i in range(num_inputs)] |
| for n in input_names: |
| workspace.FeedBlob(n, np.random.randn(*input_dim).astype(np.float32)) |
| |
| net = core.Net("benchmark_net") |
| net.Concat(input_names, ["output", "split_info"], axis=axis, add_axis=add_axis) |
| workspace.CreateNet(net) |
| |
| runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True) |
| print(f"{num_inputs * np.prod(input_dim) * 4 / runtimes[1] / 1e6} GB/s") |
| |
| |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser(description="minimal benchmark for concat.") |
| parser.add_argument("--num_inputs", type=int, default=2) |
| parser.add_argument("--input_dim", nargs="+", type=int, required=True) |
| parser.add_argument("--axis", type=int, default=-1) |
| parser.add_argument("--add_axis", type=int, default=0) |
| parser.add_argument("--iterations", type=int, default=64) |
| args, extra_args = parser.parse_known_args() |
| core.GlobalInit(["python"] + extra_args) |
| benchmark_concat( |
| args.num_inputs, args.input_dim, args.axis, args.add_axis, args.iterations |
| ) |