| ## @package add_bias |
| # Module caffe2.python.layers.add_bias |
| |
| |
| |
| |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ModelLayer |
| import math |
| |
| |
| class AddBias(ModelLayer): |
| |
| def __init__(self, model, input_record, bias_init=None, |
| bias_optim=None, name='add_bias'): |
| super(AddBias, self).__init__(model, name, input_record) |
| assert isinstance(input_record, schema.Scalar), "Incorrect input type" |
| assert len(input_record.field_type().shape) > 0, ( |
| "AddBias expects limited dimensions of the input tensor") |
| |
| input_dims = input_record.field_type().shape[0] |
| assert input_dims > 0, ( |
| "AddBias expects input dimensions > 0, got {}".format(input_dims)) |
| |
| scale = math.sqrt(1.0 / input_dims) |
| bias_init = bias_init if bias_init else ( |
| 'UniformFill', {'min': -scale, 'max': scale}) |
| |
| self.b = self.create_param( |
| param_name='b', |
| shape=[input_dims, ], |
| initializer=bias_init, |
| optimizer=bias_optim, |
| ) |
| |
| self.output_schema = schema.Scalar( |
| (input_record.field_type().base, (input_dims, )), |
| self.get_next_blob_reference('output') |
| ) |
| |
| def add_ops(self, net): |
| net.Add(self.input_record.field_blobs() + [self.b], |
| self.output_schema.field_blobs(), broadcast=1) |