| ## @package bpr_loss |
| # Module caffe2.python.layers.bpr_loss |
| |
| |
| |
| |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| from caffe2.python.layers.tags import ( |
| Tags |
| ) |
| import numpy as np |
| |
| |
| # ref: https://arxiv.org/pdf/1205.2618.pdf |
| class BPRLoss(ModelLayer): |
| |
| def __init__(self, model, input_record, name='bpr_loss', **kwargs): |
| super(BPRLoss, self).__init__(model, name, input_record, **kwargs) |
| assert schema.is_schema_subset( |
| schema.Struct( |
| ('pos_prediction', schema.Scalar()), |
| ('neg_prediction', schema.List(np.float32)), |
| ), |
| input_record |
| ) |
| self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) |
| self.output_schema = schema.Scalar( |
| np.float32, |
| self.get_next_blob_reference('output')) |
| |
| def add_ops(self, net): |
| # formula: |
| # loss = - SUM(Ln(Sigmoid(Simlarity(u, pos) - Simlarity(u, neg)))) |
| neg_score = self.input_record.neg_prediction['values']() |
| |
| pos_score = net.LengthsTile( |
| [ |
| self.input_record.pos_prediction(), |
| self.input_record.neg_prediction['lengths']() |
| ], |
| net.NextScopedBlob('pos_score_repeated') |
| ) |
| # https://www.tensorflow.org/api_docs/python/tf/math/log_sigmoid |
| softplus = net.Softplus([net.Sub([neg_score, pos_score])]) |
| net.ReduceFrontSum(softplus, self.output_schema.field_blobs()) |