| ## @package concat |
| # Module caffe2.python.layers.concat |
| |
| |
| |
| |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| from future.utils import viewitems |
| import numpy as np |
| from collections import defaultdict |
| |
| import logging |
| logger = logging.getLogger(__name__) |
| |
| |
| def get_concatenated_feature_to_index(blobs_to_concat): |
| concat_feature_to_index = defaultdict(list) |
| start_pos = 0 |
| for scalar in blobs_to_concat: |
| num_dims = scalar.dtype.shape[0] |
| if hasattr(scalar, 'metadata') \ |
| and hasattr(scalar.metadata, 'feature_specs') \ |
| and hasattr(scalar.metadata.feature_specs, 'feature_to_index') \ |
| and isinstance(scalar.metadata.feature_specs.feature_to_index, dict): # noqa B950 |
| for k, v in scalar.metadata.feature_specs.feature_to_index.items(): |
| concat_feature_to_index[k].extend([start_pos + vi for vi in v]) |
| start_pos += num_dims |
| return dict(concat_feature_to_index) if concat_feature_to_index.keys() else None |
| |
| |
| class Concat(ModelLayer): |
| """ |
| Construct Concat layer |
| Assume that first dimension is batch, |
| |
| Example: |
| |
| embedding_dim = 64 |
| input_record = self.new_record(schema.Struct( |
| ('input1', schema.Scalar((np.float32, (embedding_dim, )))), |
| ('input2', schema.Scalar((np.float32, (embedding_dim, )))), |
| ('input3', schema.Scalar((np.float32, (embedding_dim, )))), |
| )) |
| |
| output = self.model.Concat(input_record) |
| self.assertEqual( |
| schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))), |
| output |
| ) |
| |
| # Note that in Concat layer we assume first dimension is batch. |
| # so input is B * embedding_dim |
| # add_axis=1 make it B * 1 * embedding_dim |
| # Concat on axis=1 make it B * N * embedding_dim |
| |
| output = self.model.Concat(input_record, axis=1, add_axis=1) |
| self.assertEqual( |
| schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))), |
| output |
| ) |
| """ |
| |
| def __init__(self, model, input_record, axis=1, add_axis=0, |
| name='concat', **kwargs): |
| super(Concat, self).__init__(model, name, input_record, **kwargs) |
| self.axis = axis |
| self.add_axis = add_axis |
| assert not (axis == 0 and add_axis == 1), \ |
| "It's not allowed to add axis=0" |
| assert isinstance(input_record, schema.Struct),\ |
| "Incorrect input type. Expected Struct, but received: {0}".\ |
| format(input_record) |
| |
| shapes = [] |
| for field_name, field_type in viewitems(input_record.fields): |
| assert isinstance(field_type, schema.Scalar),\ |
| "Incorrect input type for {}. Expected Scalar, but got: {}".\ |
| format(field_name, field_type) |
| # Assume that first dimension is batch, so actual axis in shape is |
| # axis - 1 |
| shape = list(field_type.field_type().shape) |
| if add_axis: |
| shape.insert(axis - 1, 1) |
| assert len(shape) >= axis,\ |
| "Concat expects that limited dimensions of the input tensor" |
| shapes.append(shape) |
| logger.info('Concat Layer input shapes: ' + str(shapes)) |
| |
| if axis == 0: |
| self.output_schema = schema.from_blob_list( |
| input_record[0], |
| [self.get_next_blob_reference('output')] |
| ) |
| return |
| |
| concat_dim = 0 |
| for shape in shapes: |
| concat_dim += shape[axis - 1] |
| shape[axis - 1] = 0 |
| assert shape == shapes[0],\ |
| "Shapes {0} and {1} are not compatible for Concat".\ |
| format(shape, shapes[0]) |
| output_dims = shapes[0] |
| output_dims[axis - 1] = concat_dim |
| |
| logger.info('Concat Layer output_dims: ' + str(output_dims)) |
| self.output_schema = schema.Scalar( |
| (np.float32, output_dims), |
| self.get_next_blob_reference('output')) |
| |
| record_to_concat = input_record.fields.values() |
| concated_feature_to_index = get_concatenated_feature_to_index( |
| record_to_concat |
| ) |
| if concated_feature_to_index: |
| metadata = schema.Metadata( |
| feature_specs=schema.FeatureSpec( |
| feature_to_index=concated_feature_to_index |
| ) |
| ) |
| self.output_schema.set_metadata(metadata) |
| |
| |
| def add_ops(self, net): |
| net.Concat( |
| self.input_record.field_blobs(), |
| [ |
| self.output_schema.field_blobs()[0], |
| self.output_schema.field_blobs()[0] + "_concat_dims" |
| ], |
| axis=self.axis, |
| add_axis=self.add_axis, |
| ) |