| # @package functional |
| # Module caffe2.python.layers.functional |
| |
| |
| |
| |
| |
| from caffe2.python import core, schema, scope, workspace |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| import caffe2.proto.caffe2_pb2 as caffe2_pb2 |
| import numpy as np |
| import logging |
| |
| logger = logging.getLogger(__name__) |
| logger.setLevel(logging.INFO) |
| |
| |
| class Functional(ModelLayer): |
| |
| def __init__(self, model, input_record, output_names_or_num, function, |
| name='functional', output_dtypes=None, tags=None, **kwargs): |
| |
| # allow coercion |
| input_record = schema.as_record(input_record) |
| |
| super(Functional, self).__init__(model, name, input_record, tags=tags, **kwargs) |
| self._function = function |
| self._kwargs = kwargs |
| return_struct = ( |
| isinstance(output_names_or_num, list) or |
| (isinstance(output_names_or_num, int) and |
| output_names_or_num != 1) |
| ) |
| |
| with scope.NameScope(self.name, reset=True): |
| if isinstance(output_names_or_num, int): |
| struct_output_schema = schema.NewRecord( |
| model.net, schema.RawTuple(output_names_or_num)) |
| elif isinstance(output_names_or_num, schema.Field): |
| self.output_schema = output_names_or_num.clone(keep_blobs=True) |
| return |
| else: |
| if not isinstance(output_names_or_num, list): |
| output_names_or_num = [output_names_or_num] |
| out_tuple = [(out, np.void) for out in output_names_or_num] |
| struct_output_schema = schema.NewRecord( |
| model.net, schema.Struct(*out_tuple)) |
| |
| num_outputs = len(struct_output_schema.field_blobs()) |
| |
| # functional layer returns Struct if more than one outputs or output is |
| # a list, otherwise Scalar |
| if return_struct: |
| self.output_schema = struct_output_schema |
| else: |
| self.output_schema = struct_output_schema[0] |
| |
| # If output_dtypes is provided, use it for output schema. Otherwise |
| # the shape and type will be inferred. |
| if output_dtypes is not None: |
| if not isinstance(output_dtypes, list): |
| output_dtypes = [output_dtypes] * num_outputs |
| assert len(output_dtypes) == num_outputs |
| for dtype, scalar in zip(output_dtypes, |
| self.output_schema.all_scalars()): |
| scalar.set_type(dtype) |
| return |
| |
| # Fake execution of the function to infer shapes and types automatically |
| had_issues = False |
| try: |
| type_net = core.Net('_temp_type_and_shape_inference_net') |
| schema.InitEmptyRecord(type_net, input_record, enforce_types=True) |
| |
| function(type_net, self.input_record, self.output_schema, **kwargs) |
| (shapes, types) = workspace.InferShapesAndTypes([type_net], {}) |
| for i in range(num_outputs): |
| scalar_schema = (self.output_schema[i] if return_struct |
| else self.output_schema) |
| blob = scalar_schema() |
| if blob not in types or blob not in shapes: |
| had_issues = True |
| continue |
| if shapes[blob] == []: |
| # Scalar type |
| shape = tuple() |
| elif shapes[blob][0] == 0: |
| shape = tuple(shapes[blob][1:]) |
| else: |
| logger.warning("unexpected shape: {}".format(shapes[blob])) |
| # If batch dimension is not first - give up on shape |
| # inference for that blob |
| had_issues = True |
| continue |
| |
| # TODO(amalevich): Move it to some shared library |
| dtype = None |
| if types[blob] == caffe2_pb2.TensorProto.DOUBLE: |
| dtype = (np.float64, shape) |
| elif types[blob] == caffe2_pb2.TensorProto.FLOAT: |
| dtype = (np.float32, shape) |
| elif types[blob] == caffe2_pb2.TensorProto.INT32: |
| dtype = (np.int32, shape) |
| elif types[blob] == caffe2_pb2.TensorProto.INT64: |
| dtype = (np.int64, shape) |
| elif types[blob] == caffe2_pb2.TensorProto.FLOAT16: |
| dtype = (np.float16, shape) |
| |
| if dtype is not None: |
| scalar_schema.set_type(dtype) |
| except TypeError as ex: |
| had_issues = True |
| logger.warning(str(ex)) |
| |
| if had_issues: |
| logger.warning( |
| "Type inference had problems for layer: {}".format(self.name)) |
| |
| def add_ops(self, net): |
| self._function( |
| net, self.input_record, self.output_schema, **(self._kwargs)) |