| ## @package random_neg_rank_loss |
| # Module caffe2.python.layers.random_neg_rank_loss |
| |
| |
| |
| |
| |
| from caffe2.python import schema, core |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| from caffe2.python.layers.tags import ( |
| Tags |
| ) |
| import numpy as np |
| |
| |
| class MarginRankLoss(ModelLayer): |
| |
| def __init__(self, model, input_record, name='margin_rank_loss', |
| margin=0.1, average_loss=False, **kwargs): |
| super(MarginRankLoss, self).__init__(model, name, input_record, **kwargs) |
| assert margin >= 0, ('For hinge loss, margin should be no less than 0') |
| self._margin = margin |
| self._average_loss = average_loss |
| assert schema.is_schema_subset( |
| schema.Struct( |
| ('pos_prediction', schema.Scalar()), |
| ('neg_prediction', schema.List(np.float32)), |
| ), |
| input_record |
| ) |
| self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) |
| self.output_schema = schema.Scalar( |
| np.float32, |
| self.get_next_blob_reference('output')) |
| |
| def add_ops(self, net): |
| neg_score = self.input_record.neg_prediction['values']() |
| |
| pos_score = net.LengthsTile( |
| [ |
| self.input_record.pos_prediction(), |
| self.input_record.neg_prediction['lengths']() |
| ], |
| net.NextScopedBlob('pos_score_repeated') |
| ) |
| const_1 = net.ConstantFill( |
| neg_score, |
| net.NextScopedBlob('const_1'), |
| value=1, |
| dtype=core.DataType.INT32 |
| ) |
| rank_loss = net.MarginRankingCriterion( |
| [pos_score, neg_score, const_1], |
| net.NextScopedBlob('rank_loss'), |
| margin=self._margin, |
| ) |
| if self._average_loss: |
| net.AveragedLoss(rank_loss, self.output_schema.field_blobs()) |
| else: |
| net.ReduceFrontSum(rank_loss, self.output_schema.field_blobs()) |