blob: 034c897e2c2f8bbbfe68962819930019a92d48d3 [file] [log] [blame]
## @package sampling_train
# Module caffe2.python.layers.sampling_train
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer, get_layer_class
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
class SamplingTrain(ModelLayer):
def __init__(
self,
model,
input_record,
prediction_layer,
output_dims,
subtract_log_odd=True,
name='sampling_train',
**kwargs
):
super(SamplingTrain, self).__init__(
model, name, input_record, **kwargs
)
layer_class = get_layer_class(prediction_layer)
assert issubclass(layer_class, SamplingTrainableMixin)
assert 'indices' in input_record
assert isinstance(input_record.indices, schema.Scalar),\
"input_record.indices is expected to be a schema.Scalar"
assert 'input' in input_record
self.subtract_log_odd = subtract_log_odd
if self.subtract_log_odd:
assert 'sampling_prob' in input_record
self._prediction_layer = layer_class(
model,
input_record.input,
output_dims=output_dims,
**kwargs
)
self._prediction_layer.train_param_blobs = [
model.net.NextBlob(str(blob) + '_sampled')
for blob in self._prediction_layer.param_blobs
]
self.params = self._prediction_layer.params
self.output_schema = self._prediction_layer.output_schema
def add_ops(self, net):
self._prediction_layer.add_ops(net)
def add_train_ops(self, net):
for full_blob, sampled_blob in zip(
self._prediction_layer.param_blobs,
self._prediction_layer.train_param_blobs
):
net.Gather([full_blob, self.input_record.indices()], sampled_blob)
self._prediction_layer.add_train_ops(net)
if not self.subtract_log_odd:
return
log_q = net.Log(self.input_record.sampling_prob(),
net.NextScopedBlob("log_q"))
net.Sub([self.output_schema(), log_q], self.output_schema(),
broadcast=1, use_grad_hack=1)