blob: b52501584064d0ae951a025d6d9c1d4fb2057b6c [file] [log] [blame]
import copy
from caffe2.proto import caffe2_pb2
from caffe2.python import core
def rewrite_init_net_simple(net):
for op in net.op:
op.device_option.device_type = caffe2_pb2.IDEEP
def last_producer(ops, blob):
for (i, op) in reversed(list(enumerate(ops))):
if blob in op.output:
return i
raise ValueError("Failed to find last producer of blob, %s", blob)
def fix_BoxWithNMSLimit(net):
outputs = set()
for op in net.op:
if op.type == 'BoxWithNMSLimit':
outputs.add(op.output[0])
outputs.add(op.output[1])
outputs.add(op.output[2])
for op in net.op:
if op.type == 'CopyIDEEPToCPU':
if op.input[0] in outputs:
print("Chaning CopyIDEEPToCPU to Copy for {}".format(op.input[0]))
op.type = 'Copy'
op.device_option.device_type = caffe2_pb2.CPU
def rewrite_run_net_simple(net):
# Simple rewrite for now - assume entire graph can be executed
# with MKL, so just insert copy ops for external_input[0] and
# external_output[0]
def mkl_tmp(name):
return "{}__MKL__".format(name)
input_blob = net.external_input[0]
if input_blob != net.op[0].input[0]:
raise Exception(
"Input blob: {} is not consumed by first op: {}".format(
input_blob, net.op[0]))
# Modify input/outputs to point to copied MKL blobs.
from_cpu = "CopyCPUToIDEEP"
to_cpu = "CopyIDEEPToCPU"
copy_input_op = core.CreateOperator(
from_cpu, input_blob, mkl_tmp(input_blob))
net.op[0].input[0] = mkl_tmp(input_blob)
copy_output_ops = [
core.CreateOperator(to_cpu, mkl_tmp(output_blob), output_blob)
for output_blob in net.external_output]
for output_blob in net.external_output:
last_producer_idx = last_producer(net.op, output_blob)
renamed_outputs = [blob if blob != output_blob else mkl_tmp(blob)
for blob in net.op[last_producer_idx].output]
net.op[last_producer_idx].output[:] = renamed_outputs
# Rename any subsequent consumers of an output blob.
for op in net.op[last_producer_idx + 1:]:
renamed_input = [blob if blob != output_blob else mkl_tmp(blob)
for blob in op.input]
op.input[:] = renamed_input
ops = [copy_input_op] + net.op[:] + copy_output_ops
del net.op[:]
net.op.extend(ops)
device = caffe2_pb2.IDEEP
for op in net.op:
op.device_option.MergeFrom(
core.DeviceOption(device_type=device))
op.engine = ""
# Temporarily disable conv+relu fusion until we verify further
# net.ParseFromString(
# C.transform_optimizeForMKLDNN(net.SerializeToString()))
fix_BoxWithNMSLimit(net)
def rewrite_run_net_simple_xrayocr_lstm(net):
# For xrayocr model with lstm, only rewrite the non-lstm part of the net to
# enable mkl, then copy the temporary output blob at the break point
# and all external inputs for lstm part to cpu, and execuate rest of the net
# (two lstm) on cpu
# This only works for the xrayocr lstm model which uses the first 'Shape' op
# to decide the break point, and after two lstm it's external_output
# directly so there's no need to copy back to ideep/mkl
def mkl_tmp(name):
return "{}__MKL__".format(name)
def cpu_tmp(name):
return "{}__CPU__".format(name)
input_blob = net.external_input[0]
if input_blob != net.op[0].input[0]:
raise Exception(
"Input blob: {} is not consumed by first op: {}".format(
input_blob, net.op[0]))
# Modify input/outputs to point to copied MKL blobs.
from_cpu = "CopyCPUToIDEEP"
to_cpu = "CopyIDEEPToCPU"
copy_input_op = core.CreateOperator(
from_cpu, input_blob, mkl_tmp(input_blob))
net.op[0].input[0] = mkl_tmp(input_blob)
# the net may contain some external_inputs falsely added during ONNX->Caffe2
# This should be taken care of in early steps during pytorch_to_caffe2,
# but if not it can cause issue in follow up steps, so check here to confirm
for input_blob in net.external_input:
for op in net.op:
# look for if the external_input blob is output of any op in the net
assert input_blob not in op.output
external_output = None
external_inputs_to_cpu = set()
find_first_shape_op = False
cpu_op_start_idx = -1
for op_idx, op in enumerate(net.op):
# the first Shape op mark the starting point of LSTM chunk of the net
if not find_first_shape_op:
if op.type == 'Shape':
external_output = op.input
find_first_shape_op = True
cpu_op_start_idx = op_idx
else:
# any external input in the LSTM part need to be copied to CPU
for in_blob in op.input:
if in_blob in net.external_input:
external_inputs_to_cpu.add(in_blob)
# make sure we found the expected break point of the net
assert external_output is not None
# create op to copy external input blobs used in LSTM part from IDEEP to CPU
copy_extra_input_ops = []
for in_blob in external_inputs_to_cpu:
copy_extra_input_ops.append(core.CreateOperator(to_cpu, in_blob,
cpu_tmp(in_blob)))
# rename input blobs in LSTM part to use the CPU copy
for op in net.op[cpu_op_start_idx:]:
renamed_input = [blob if blob != in_blob else cpu_tmp(in_blob)
for blob in op.input]
op.input[:] = renamed_input
copy_output_ops = [
core.CreateOperator(to_cpu, mkl_tmp(output_blob), output_blob)
for output_blob in external_output]
for output_blob in external_output:
last_producer_idx = last_producer(net.op, output_blob)
renamed_outputs = [blob if blob != output_blob else mkl_tmp(blob)
for blob in net.op[last_producer_idx].output]
net.op[last_producer_idx].output[:] = renamed_outputs
# rearrange all ops in correct order
ops = [copy_input_op] + net.op[:cpu_op_start_idx] \
+ copy_output_ops + copy_extra_input_ops + net.op[cpu_op_start_idx:]
del net.op[:]
net.op.extend(ops)
device = caffe2_pb2.IDEEP
for op in net.op:
# the first Shape op mark the starting point of LSTM chunk of the net
if op.type == 'Shape':
# all LSTM ops should run on CPU
device = caffe2_pb2.CPU
op.device_option.MergeFrom(
core.DeviceOption(device_type=device))
op.engine = ""
# RecurrentNetwork has a nested step_net that needs special treatment
if op.type == 'RecurrentNetwork':
for arg in op.arg:
if arg.name == 'step_net':
for nested_op in arg.n.op:
# set device to CPU
nested_op.device_option.MergeFrom(
core.DeviceOption(device_type=device))
nested_op.engine = ""
# rename inputs in op of nested net
renamed_input = []
for blob in nested_op.input:
renamed_input.append(blob
if blob not in external_inputs_to_cpu
else cpu_tmp(blob))
nested_op.input[:] = renamed_input
# rename external inputs of nested net
new_external_input = []
for blob in arg.n.external_input:
new_external_input.append(blob
if blob not in external_inputs_to_cpu
else cpu_tmp(blob))
arg.n.external_input[:] = new_external_input
# Temporarily disable conv+relu fusion until we verify further
# net.ParseFromString(
# C.transform_optimizeForMKLDNN(net.SerializeToString()))
fix_BoxWithNMSLimit(net)
def rewrite_model_helper_simple(model):
model = copy.deepcopy(model)
# All parameter initialization should run on MKL
rewrite_init_net_simple(model.param_init_net.Proto())
rewrite_run_net_simple(model.net.Proto())
return model