| ## @package download |
| # Module caffe2.python.models.download |
| |
| |
| |
| |
| import argparse |
| import os |
| import sys |
| import signal |
| import re |
| import json |
| |
| from caffe2.proto import caffe2_pb2 |
| |
| # Import urllib |
| from urllib.error import HTTPError, URLError |
| import urllib.request as urllib |
| |
| # urllib requires more work to deal with a redirect, so not using vanity url |
| DOWNLOAD_BASE_URL = "https://s3.amazonaws.com/download.caffe2.ai/models/" |
| DOWNLOAD_COLUMNS = 70 |
| |
| |
| # Don't let urllib hang up on big downloads |
| def signalHandler(signal, frame): |
| print("Killing download...") |
| exit(0) |
| |
| |
| signal.signal(signal.SIGINT, signalHandler) |
| |
| |
| def deleteDirectory(top_dir): |
| for root, dirs, files in os.walk(top_dir, topdown=False): |
| for name in files: |
| os.remove(os.path.join(root, name)) |
| for name in dirs: |
| os.rmdir(os.path.join(root, name)) |
| os.rmdir(top_dir) |
| |
| |
| def progressBar(percentage): |
| full = int(DOWNLOAD_COLUMNS * percentage / 100) |
| bar = full * "#" + (DOWNLOAD_COLUMNS - full) * " " |
| sys.stdout.write(u"\u001b[1000D[" + bar + "] " + str(percentage) + "%") |
| sys.stdout.flush() |
| |
| |
| def downloadFromURLToFile(url, filename, show_progress=True): |
| try: |
| print("Downloading from {url}".format(url=url)) |
| response = urllib.urlopen(url) |
| size = int(response.info().get('Content-Length').strip()) |
| chunk = min(size, 8192) |
| print("Writing to {filename}".format(filename=filename)) |
| if show_progress: |
| downloaded_size = 0 |
| progressBar(0) |
| with open(filename, "wb") as local_file: |
| while True: |
| data_chunk = response.read(chunk) |
| if not data_chunk: |
| break |
| local_file.write(data_chunk) |
| if show_progress: |
| downloaded_size += len(data_chunk) |
| progressBar(int(100 * downloaded_size / size)) |
| print("") # New line to fix for progress bar |
| except HTTPError as e: |
| raise Exception("Could not download model. [HTTP Error] {code}: {reason}." |
| .format(code=e.code, reason=e.reason)) from e |
| except URLError as e: |
| raise Exception("Could not download model. [URL Error] {reason}." |
| .format(reason=e.reason)) from e |
| |
| |
| def getURLFromName(name, filename): |
| return "{base_url}{name}/{filename}".format(base_url=DOWNLOAD_BASE_URL, |
| name=name, filename=filename) |
| |
| |
| def downloadModel(model, args): |
| # Figure out where to store the model |
| model_folder = '{folder}'.format(folder=model) |
| dir_path = os.path.dirname(os.path.realpath(__file__)) |
| if args.install: |
| model_folder = '{dir_path}/{folder}'.format(dir_path=dir_path, |
| folder=model) |
| |
| # Check if that folder is already there |
| if os.path.exists(model_folder) and not os.path.isdir(model_folder): |
| if not args.force: |
| raise Exception("Cannot create folder for storing the model,\ |
| there exists a file of the same name.") |
| else: |
| print("Overwriting existing file! ({filename})" |
| .format(filename=model_folder)) |
| os.remove(model_folder) |
| if os.path.isdir(model_folder): |
| if not args.force: |
| response = "" |
| query = "Model already exists, continue? [y/N] " |
| try: |
| response = raw_input(query) |
| except NameError: |
| response = input(query) |
| if response.upper() == 'N' or not response: |
| print("Cancelling download...") |
| exit(0) |
| print("Overwriting existing folder! ({filename})".format(filename=model_folder)) |
| deleteDirectory(model_folder) |
| |
| # Now we can safely create the folder and download the model |
| os.makedirs(model_folder) |
| for f in ['predict_net.pb', 'init_net.pb']: |
| try: |
| downloadFromURLToFile(getURLFromName(model, f), |
| '{folder}/{f}'.format(folder=model_folder, |
| f=f)) |
| except Exception as e: |
| print("Abort: {reason}".format(reason=str(e))) |
| print("Cleaning up...") |
| deleteDirectory(model_folder) |
| exit(0) |
| |
| if args.install: |
| os.symlink("{folder}/__sym_init__.py".format(folder=dir_path), |
| "{folder}/__init__.py".format(folder=model_folder)) |
| |
| |
| def validModelName(name): |
| invalid_names = ['__init__'] |
| if name in invalid_names: |
| return False |
| if not re.match("^[/0-9a-zA-Z_-]+$", name): |
| return False |
| return True |
| |
| class ModelDownloader: |
| |
| def __init__(self, model_env_name='CAFFE2_MODELS'): |
| self.model_env_name = model_env_name |
| |
| def _model_dir(self, model): |
| caffe2_home = os.path.expanduser(os.getenv('CAFFE2_HOME', '~/.caffe2')) |
| models_dir = os.getenv(self.model_env_name, os.path.join(caffe2_home, 'models')) |
| return os.path.join(models_dir, model) |
| |
| def _download(self, model): |
| model_dir = self._model_dir(model) |
| assert not os.path.exists(model_dir) |
| os.makedirs(model_dir) |
| |
| for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']: |
| url = getURLFromName(model, f) |
| dest = os.path.join(model_dir, f) |
| try: |
| downloadFromURLToFile(url, dest, show_progress=False) |
| except TypeError: |
| # show_progress not supported prior to |
| # Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1 |
| # (Sep 17, 2017) |
| downloadFromURLToFile(url, dest) |
| except Exception: |
| deleteDirectory(model_dir) |
| raise |
| |
| # This version returns an extra debug_str argument that helps to understand |
| # why our work sometimes fails in sandcastle |
| def get_c2_model_dbg(self, model_name): |
| debug_str = "get_c2_model debug:\n" |
| model_dir = self._model_dir(model_name) |
| if not os.path.exists(model_dir): |
| self._download(model_name) |
| |
| c2_predict_pb = os.path.join(model_dir, 'predict_net.pb') |
| debug_str += "c2_predict_pb path: " + c2_predict_pb + "\n" |
| c2_predict_net = caffe2_pb2.NetDef() |
| with open(c2_predict_pb, 'rb') as f: |
| len_read = c2_predict_net.ParseFromString(f.read()) |
| debug_str += "c2_predict_pb ParseFromString = " + str(len_read) + "\n" |
| c2_predict_net.name = model_name |
| |
| c2_init_pb = os.path.join(model_dir, 'init_net.pb') |
| debug_str += "c2_init_pb path: " + c2_init_pb + "\n" |
| c2_init_net = caffe2_pb2.NetDef() |
| with open(c2_init_pb, 'rb') as f: |
| len_read = c2_init_net.ParseFromString(f.read()) |
| debug_str += "c2_init_pb ParseFromString = " + str(len_read) + "\n" |
| c2_init_net.name = model_name + '_init' |
| |
| with open(os.path.join(model_dir, 'value_info.json')) as f: |
| value_info = json.load(f) |
| return c2_init_net, c2_predict_net, value_info, debug_str |
| |
| def get_c2_model(self, model_name): |
| init_net, predict_net, value_info, _ = self.get_c2_model_dbg(model_name) |
| return init_net, predict_net, value_info |
| |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser( |
| description='Download or install pretrained models.') |
| parser.add_argument('model', nargs='+', |
| help='Model to download/install.') |
| parser.add_argument('-i', '--install', action='store_true', |
| help='Install the model.') |
| parser.add_argument('-f', '--force', action='store_true', |
| help='Force a download/installation.') |
| args = parser.parse_args() |
| for model in args.model: |
| if validModelName(model): |
| downloadModel(model, args) |
| else: |
| print("'{}' is not a valid model name.".format(model)) |