| |
| |
| |
| |
| |
| import numpy as np |
| import unittest |
| from hypothesis import given, settings |
| import hypothesis.strategies as st |
| |
| from caffe2.python import brew, core, model_helper, rnn_cell |
| import caffe2.python.workspace as ws |
| |
| |
| class TestObservers(unittest.TestCase): |
| def setUp(self): |
| core.GlobalInit(["python", "caffe2"]) |
| ws.ResetWorkspace() |
| self.model = model_helper.ModelHelper() |
| brew.fc(self.model, "data", "y", |
| dim_in=4, dim_out=2, |
| weight_init=('ConstantFill', dict(value=1.0)), |
| bias_init=('ConstantFill', dict(value=0.0)), |
| axis=0) |
| ws.FeedBlob("data", np.zeros([4], dtype='float32')) |
| |
| ws.RunNetOnce(self.model.param_init_net) |
| ws.CreateNet(self.model.net) |
| |
| def testObserver(self): |
| ob = self.model.net.AddObserver("TimeObserver") |
| ws.RunNet(self.model.net) |
| print(ob.average_time()) |
| num = self.model.net.NumObservers() |
| self.model.net.RemoveObserver(ob) |
| assert(self.model.net.NumObservers() + 1 == num) |
| |
| @given( |
| num_layers=st.integers(1, 4), |
| forward_only=st.booleans() |
| ) |
| @settings(deadline=1000) |
| def test_observer_rnn_executor(self, num_layers, forward_only): |
| ''' |
| Test that the RNN executor produces same results as |
| the non-executor (i.e running step nets as sequence of simple nets). |
| ''' |
| |
| Tseq = [2, 3, 4] |
| batch_size = 10 |
| input_dim = 3 |
| hidden_dim = 3 |
| |
| run_cnt = [0] * len(Tseq) |
| avg_time = [0] * len(Tseq) |
| for j in range(len(Tseq)): |
| T = Tseq[j] |
| |
| ws.ResetWorkspace() |
| ws.FeedBlob( |
| "seq_lengths", |
| np.array([T] * batch_size, dtype=np.int32) |
| ) |
| ws.FeedBlob("target", np.random.rand( |
| T, batch_size, hidden_dim).astype(np.float32)) |
| ws.FeedBlob("hidden_init", np.zeros( |
| [1, batch_size, hidden_dim], dtype=np.float32 |
| )) |
| ws.FeedBlob("cell_init", np.zeros( |
| [1, batch_size, hidden_dim], dtype=np.float32 |
| )) |
| |
| model = model_helper.ModelHelper(name="lstm") |
| model.net.AddExternalInputs(["input"]) |
| |
| init_blobs = [] |
| for i in range(num_layers): |
| hidden_init, cell_init = model.net.AddExternalInputs( |
| "hidden_init_{}".format(i), |
| "cell_init_{}".format(i) |
| ) |
| init_blobs.extend([hidden_init, cell_init]) |
| |
| output, last_hidden, _, last_state = rnn_cell.LSTM( |
| model=model, |
| input_blob="input", |
| seq_lengths="seq_lengths", |
| initial_states=init_blobs, |
| dim_in=input_dim, |
| dim_out=[hidden_dim] * num_layers, |
| drop_states=True, |
| forward_only=forward_only, |
| return_last_layer_only=True, |
| ) |
| |
| loss = model.AveragedLoss( |
| model.SquaredL2Distance([output, "target"], "dist"), |
| "loss" |
| ) |
| # Add gradient ops |
| if not forward_only: |
| model.AddGradientOperators([loss]) |
| |
| # init |
| for init_blob in init_blobs: |
| ws.FeedBlob(init_blob, np.zeros( |
| [1, batch_size, hidden_dim], dtype=np.float32 |
| )) |
| ws.RunNetOnce(model.param_init_net) |
| |
| # Run with executor |
| self.enable_rnn_executor(model.net, 1, forward_only) |
| |
| np.random.seed(10022015) |
| input_shape = [T, batch_size, input_dim] |
| ws.FeedBlob( |
| "input", |
| np.random.rand(*input_shape).astype(np.float32) |
| ) |
| ws.FeedBlob( |
| "target", |
| np.random.rand( |
| T, |
| batch_size, |
| hidden_dim |
| ).astype(np.float32) |
| ) |
| ws.CreateNet(model.net, overwrite=True) |
| |
| time_ob = model.net.AddObserver("TimeObserver") |
| run_cnt_ob = model.net.AddObserver("RunCountObserver") |
| ws.RunNet(model.net) |
| avg_time[j] = time_ob.average_time() |
| run_cnt[j] = int(''.join(x for x in run_cnt_ob.debug_info() if x.isdigit())) |
| model.net.RemoveObserver(time_ob) |
| model.net.RemoveObserver(run_cnt_ob) |
| |
| print(avg_time) |
| print(run_cnt) |
| self.assertTrue(run_cnt[1] > run_cnt[0] and run_cnt[2] > run_cnt[1]) |
| self.assertEqual(run_cnt[1] - run_cnt[0], run_cnt[2] - run_cnt[1]) |
| |
| def enable_rnn_executor(self, net, value, forward_only): |
| num_found = 0 |
| for op in net.Proto().op: |
| if op.type.startswith("RecurrentNetwork"): |
| for arg in op.arg: |
| if arg.name == 'enable_rnn_executor': |
| arg.i = value |
| num_found += 1 |
| # This sanity check is so that if someone changes the |
| # enable_rnn_executor parameter name, the test will |
| # start failing as this function will become defective. |
| self.assertEqual(1 if forward_only else 2, num_found) |