| ## @package onnx |
| # Module caffe2.python.onnx.frontend |
| |
| """Caffe2 Protobuf to ONNX converter |
| |
| To run this, you will need to have Caffe2 installed as well. |
| """ |
| |
| |
| |
| |
| |
| import collections |
| import itertools |
| import logging |
| import re |
| |
| from caffe2.python import core as caffe2_core |
| from onnx import (checker, helper, numpy_helper, mapping, |
| GraphProto, NodeProto, TensorProto, OperatorSetIdProto) |
| from onnx.helper import make_tensor_value_info, make_model |
| import numpy as np |
| |
| from caffe2.python.onnx.helper import c2_native_run_net |
| |
| import caffe2.python._import_c_extension as C |
| |
| logging.basicConfig(level=logging.INFO) |
| logger = logging.getLogger(__name__) |
| |
| |
| class Caffe2Frontend(object): |
| # This number controls the semantics of the operators we target. Whenever |
| # ONNX makes a BC breaking change to semantics of operators, having this set |
| # to an accurate number will prevent our models form exporting. However, |
| # we should strive to keep this up-to-date as much as possible. |
| target_opset_version = 9 |
| |
| _renamed_operators = { |
| 'SpatialBN': 'BatchNormalization', |
| 'Conv1D': 'Conv', |
| 'Conv2D': 'Conv', |
| 'Conv3D': 'Conv', |
| 'ConvTranspose1D': 'ConvTranspose', |
| 'ConvTranspose2D': 'ConvTranspose', |
| 'ConvTranspose3D': 'ConvTranspose', |
| 'MaxPool1D': 'MaxPool', |
| 'MaxPool2D': 'MaxPool', |
| 'MaxPool3D': 'MaxPool', |
| 'AveragePool1D': 'AveragePool', |
| 'AveragePool2D': 'AveragePool', |
| 'AveragePool3D': 'AveragePool', |
| } |
| |
| # caffe2 arguments that are completely removed in onnx |
| _blocklist_caffe2_args = { |
| 'order': {b'NCHW'}, |
| 'cudnn_exhaustive_search': {0, 1}, |
| 'exhaustive_search': {0, 1}, |
| 'use_cudnn': {0, 1}, |
| } |
| |
| _global_renamed_args = { |
| 'kernels': 'kernel_shape', |
| } |
| |
| _per_op_renamed_args = { |
| 'Squeeze': {'dims': 'axes'}, |
| 'Transpose': {'axes': 'perm'}, |
| } |
| |
| _special_operators = {} |
| |
| # Dummy name generator |
| _dummy_name = C.DummyName() |
| |
| @classmethod |
| def dummy_name(cls): |
| return cls._dummy_name.new_dummy_name() |
| |
| @classmethod |
| def _common_caffe2_arg_to_onnx_attr(cls, op_def, arg): |
| # name |
| op_type = op_def.type |
| name = cls._global_renamed_args.get(arg.name, arg.name) |
| if op_type in cls._per_op_renamed_args: |
| # Per-op attribute renames override the global attribute renames |
| name = cls._per_op_renamed_args[op_type].get(arg.name, name) |
| |
| # value |
| if arg.HasField('f'): |
| value = arg.f |
| elif arg.HasField('i'): |
| value = arg.i |
| elif arg.HasField('s'): |
| value = arg.s |
| elif arg.floats: |
| value = arg.floats |
| elif arg.ints: |
| value = arg.ints |
| elif arg.strings: |
| value = arg.strings |
| else: |
| raise ValueError('Could not find data field in arg: {}'.format(arg)) |
| |
| if name in cls._blocklist_caffe2_args: |
| assert value in cls._blocklist_caffe2_args[arg.name] |
| return None |
| |
| return helper.make_attribute(name, value) |
| |
| @classmethod |
| def caffe2_arg_to_onnx_attr(cls, op_def, arg): |
| return cls._common_caffe2_arg_to_onnx_attr(op_def, arg) |
| |
| @classmethod |
| def _common_caffe2_op_to_onnx_node(cls, op_def, shapes): |
| node_def = NodeProto() |
| node_def.name = op_def.name |
| |
| node_def.op_type = cls._renamed_operators.get(op_def.type, op_def.type) |
| |
| node_def.input.extend(op_def.input) |
| node_def.output.extend(op_def.output) |
| |
| attrs = filter(None, [cls.caffe2_arg_to_onnx_attr(op_def, arg) |
| for arg in op_def.arg]) |
| node_def.attribute.extend(attrs) |
| |
| return node_def |
| |
| @classmethod |
| def caffe2_op_to_onnx_node(cls, op_def, shapes): |
| if C.support_onnx_export(op_def.type): |
| node_strs, tensor_strs = C.export_to_onnx(cls._dummy_name, op_def.SerializeToString(), shapes) |
| nodes = [] |
| for s in node_strs: |
| node = NodeProto() |
| node.ParseFromString(s) |
| nodes.append(node) |
| const_tensors = [] |
| for s in tensor_strs: |
| tensor = TensorProto() |
| tensor.ParseFromString(s) |
| const_tensors.append(tensor) |
| return nodes, const_tensors |
| elif op_def.type in cls._special_operators: |
| translator = getattr(cls, cls._special_operators[op_def.type]) |
| else: |
| translator = cls._common_caffe2_op_to_onnx_node |
| nodes = translator(op_def, shapes) |
| const_tensors = [] |
| if isinstance(nodes, tuple): |
| nodes, const_tensors = nodes |
| if not isinstance(nodes, collections.abc.Iterable): |
| nodes = [nodes] |
| return nodes, const_tensors |
| |
| @staticmethod |
| def _all_names_in_net(net): |
| if net is None: |
| return set() |
| |
| names = set() |
| names.update(net.external_input) |
| names.update(net.external_output) |
| for op in net.op: |
| names.update(op.input) |
| names.update(op.output) |
| return names |
| |
| @staticmethod |
| def _extract_value_info(tensor): |
| return make_tensor_value_info( |
| name=tensor.name, |
| elem_type=tensor.data_type, |
| shape=tensor.dims) |
| |
| @classmethod |
| def caffe2_net_to_onnx_graph(cls, |
| predict_net, |
| init_net=None, |
| value_info=None): |
| if value_info is None: |
| value_info = {} |
| if not isinstance(value_info, dict): |
| raise ValueError('Please pass value_info as a ' |
| 'name -> (type, shape) dictionary') |
| |
| cls._filter_fake_init(init_net, value_info) |
| cls._ssa_rewrite(predict_net, init_net, value_info) |
| |
| if init_net: |
| initializer = cls.caffe2_init_net_to_initializer(init_net) |
| value_info.update({init.name: (init.data_type, init.dims) |
| for init in initializer}) |
| else: |
| initializer = [] |
| |
| # Check if value_info contains the types/shapes of all the blobs, in |
| # which case we don't need to infer them by running the net. |
| run_native_net = False |
| for op in predict_net.op: |
| for name in itertools.chain(op.input, op.output): |
| if name not in value_info: |
| run_native_net = True |
| break |
| |
| # Check whether we have got type shape info of all input |
| missing = (set(list(predict_net.external_input)) - |
| set(value_info.keys())) |
| if missing: |
| raise RuntimeError('Could not find value info of inputs: {}'.format( |
| ', '.join(missing))) |
| |
| ws = None |
| outputs = None |
| if run_native_net: |
| inputs = {} |
| for name in predict_net.external_input: |
| elem_type, shape = value_info[name] |
| inputs[name] = np.random.randn(*shape).astype( |
| mapping.TENSOR_TYPE_TO_NP_TYPE[elem_type]) |
| |
| ws, outputs = c2_native_run_net( |
| init_net, |
| predict_net, |
| inputs) |
| |
| for name in predict_net.external_output: |
| output = outputs[name] |
| elem_type = mapping.NP_TYPE_TO_TENSOR_TYPE[output.dtype] |
| shape = output.shape |
| value_info[name] = (elem_type, shape) |
| |
| graph_def = GraphProto() |
| graph_def.name = predict_net.name |
| graph_def.initializer.extend(initializer) |
| # This is a mapping from Caffe2 names to ONNX names |
| graph_def.input.extend( |
| make_tensor_value_info( |
| name=name, |
| elem_type=value_info[name][0], |
| shape=value_info[name][1]) |
| for name in predict_net.external_input) |
| |
| cls._dummy_name.reset(cls._all_names_in_net(predict_net) | cls._all_names_in_net(init_net)) |
| |
| for op in predict_net.op: |
| shapes = {} |
| for name in itertools.chain(op.input, op.output): |
| if ws: |
| blob = ws.FetchBlob(name) |
| if hasattr(blob, 'shape'): |
| shapes[name] = blob.shape |
| else: |
| shapes[name] = value_info[name][1] |
| nodes, const_tensors = cls.caffe2_op_to_onnx_node(op, shapes=shapes) |
| graph_def.node.extend(nodes) |
| graph_def.initializer.extend(const_tensors) |
| graph_def.input.extend([cls._extract_value_info(tensor) for tensor in const_tensors]) |
| |
| all_output = set(sum((list(node.output) for node in graph_def.node), |
| [init.name for init in graph_def.initializer])) |
| redundant_output = set(vi.name for vi in graph_def.output) - all_output |
| if redundant_output: |
| logger.warning( |
| 'There are graph output not produced by any node or initializer: {}' |
| '! Will drop them.'.format(', '.join(redundant_output))) |
| graph_def.output.extend( |
| make_tensor_value_info( |
| name=name, |
| elem_type=value_info[name][0], |
| shape=value_info[name][1]) |
| for name in predict_net.external_output |
| if name in all_output) |
| |
| return graph_def |
| |
| @classmethod |
| def caffe2_init_net_to_initializer(cls, init_net): |
| ws, _ = c2_native_run_net(init_net=None, predict_net=init_net, inputs=[]) |
| output_names = [] |
| for op in init_net.op: |
| output_names.extend(op.output) |
| initializer = [numpy_helper.from_array(ws.FetchBlob(name), name=name) |
| for name in sorted(set(output_names))] |
| return initializer |
| |
| @classmethod |
| def _filter_fake_init(cls, init_net, value_info): |
| if init_net: |
| fake_inits = [op for op in init_net.op |
| if len(op.output) == 1 and op.output[0] in value_info and |
| re.match('GivenTensor.*Fill|ConstantFill', op.type)] |
| for fake_init in fake_inits: |
| init_net.op.remove(fake_init) |
| del fake_inits[:] |
| del fake_inits |
| |
| @classmethod |
| def ssa_rewrite(cls, net, init_net, value_info): |
| return cls._ssa_rewrite(net, init_net, value_info) |
| |
| @classmethod |
| def _ssa_rewrite(cls, net, init_net, value_info): |
| def ssa_name(name, version, version_cnt=None): |
| if version == 0: |
| return name |
| if version_cnt and len(version_cnt.get(name, {})) <= 1: |
| return name |
| return '{}_{}'.format(name, version) |
| |
| if init_net: |
| for op in init_net.op: |
| assert re.match('GivenTensor.*Fill', op.type), "type is {}, \n{}".format(op.type, op) |
| assert len(op.output) == 1 |
| |
| ssa, blob_versions = caffe2_core.get_ssa(net) |
| version_cnt = {} |
| versioned_blobs = [] |
| for versioned_input, versioned_output in ssa: |
| versioned_blobs += versioned_input |
| versioned_blobs += versioned_output |
| |
| for (name, version) in versioned_blobs: |
| if name not in version_cnt: |
| version_cnt[name] = {version} |
| else: |
| version_cnt[name].add(version) |
| |
| assert len(net.op) == len(ssa) |
| for op, (versioned_inputs, versioned_outputs) in zip(net.op, ssa): |
| op.input[:] = [ssa_name(name, version, version_cnt) |
| for name, version in versioned_inputs] |
| op.output[:] = [ssa_name(name, version, version_cnt) |
| for name, version in versioned_outputs] |
| net.external_output[:] = [ssa_name(name, blob_versions[name], version_cnt) |
| for name in net.external_output] |
| |
| @classmethod |
| def caffe2_net_to_onnx_model(cls, *args, **kwargs): |
| opset_id = OperatorSetIdProto() |
| opset_id.domain = '' # ONNX default domain |
| opset_id.version = cls.target_opset_version |
| model = make_model(cls.caffe2_net_to_onnx_graph(*args, **kwargs), |
| opset_imports=[opset_id], # current supported opset version |
| producer_name='onnx-caffe2', # producer name |
| ) |
| checker.check_model(model) |
| return model |
| |
| |
| caffe2_net_to_onnx_graph = Caffe2Frontend.caffe2_net_to_onnx_graph |
| caffe2_net_to_onnx_model = Caffe2Frontend.caffe2_net_to_onnx_model |
| caffe2_init_net_to_initializer = Caffe2Frontend.caffe2_init_net_to_initializer |
| ssa_rewrite = Caffe2Frontend.ssa_rewrite |