| ## @package onnx |
| # Module caffe2.python.onnx.helper |
| |
| |
| |
| |
| |
| from caffe2.proto import caffe2_pb2 |
| from onnx.backend.base import namedtupledict |
| |
| from caffe2.python.onnx.workspace import Workspace |
| import logging |
| import time |
| |
| |
| log = logging.getLogger(__name__) |
| |
| |
| def c2_native_run_op(op_def, inputs): |
| ws = Workspace() |
| if isinstance(inputs, dict): |
| for key, value in inputs.items(): |
| ws.FeedBlob(key, value, op_def.device_option) |
| else: |
| assert(len(op_def.input) == len(inputs)) |
| for key, value in zip(op_def.input, inputs): |
| ws.FeedBlob(key, value, op_def.device_option) |
| |
| ws.RunOperatorOnce(op_def) |
| |
| output_names = op_def.output |
| output_values = [ws.FetchBlob(name) for name in output_names] |
| return ws, namedtupledict('Outputs', output_names)(*output_values) |
| |
| |
| def c2_native_run_net(init_net, predict_net, inputs, debug_arg=None): |
| ws = Workspace() |
| if init_net: |
| ws.RunNetOnce(init_net) |
| |
| if isinstance(inputs, dict): |
| for key, value in inputs.items(): |
| ws.FeedBlob(key, value, predict_net.device_option) |
| else: |
| uninitialized = [input_name |
| for input_name in predict_net.external_input |
| if not ws.HasBlob(input_name)] |
| if len(uninitialized) == len(inputs): |
| for key, value in zip(uninitialized, inputs): |
| ws.FeedBlob(key, value, predict_net.device_option) |
| else: |
| # If everything is initialized, |
| # we just initialized the first len(inputs) external_input. |
| # Added some extra logging to help debug sporadic sandcastle fails |
| if len(inputs) > len(predict_net.external_input): |
| print("c2_native_run_net assert. len(inputs)=", len(inputs), |
| "len(predict_net.external_input)=", |
| len(predict_net.external_input)) |
| print("debug_arg: ", debug_arg) |
| print("predict_net ", type(predict_net), ":", predict_net) |
| print("inputs ", type(inputs), ":", inputs) |
| assert(len(inputs) <= len(predict_net.external_input)) |
| for i in range(len(inputs)): |
| ws.FeedBlob(predict_net.external_input[i], inputs[i], |
| predict_net.device_option) |
| |
| ws.RunNetOnce(predict_net) |
| |
| output_names = predict_net.external_output |
| output_values = [ws.FetchBlob(name) for name in output_names] |
| return ws, namedtupledict('Outputs', output_names)(*output_values) |
| |
| |
| def load_caffe2_net(file): |
| net = caffe2_pb2.NetDef() |
| with open(file, "rb") as f: |
| net.ParseFromString(f.read()) |
| return net |
| |
| |
| def save_caffe2_net(net, file, output_txt=False): |
| with open(file, "wb") as f: |
| f.write(net.SerializeToString()) |
| if output_txt: |
| with open(file + "txt", "w") as f: |
| f.write(str(net)) |
| |
| |
| def benchmark_caffe2_model(init_net, predict_net, warmup_iters=3, main_iters=10, layer_details=True): |
| ''' |
| Run the benchmark net on the target model. |
| Return the execution time per iteration (millisecond). |
| ''' |
| ws = Workspace() |
| if init_net: |
| ws.RunNetOnce(init_net) |
| ws.CreateNet(predict_net) |
| results = ws.BenchmarkNet(predict_net.name, warmup_iters, main_iters, layer_details) |
| del ws |
| return results[0] |
| |
| |
| def benchmark_pytorch_model(model, inputs, training=False, warmup_iters=3, |
| main_iters=10, verbose=False): |
| ''' |
| Run the model several times, and measure the execution time. |
| Return the execution time per iteration (millisecond). |
| ''' |
| for _i in range(warmup_iters): |
| model(*inputs) |
| total_pytorch_time = 0.0 |
| for _i in range(main_iters): |
| ts = time.time() |
| model(*inputs) |
| te = time.time() |
| total_pytorch_time += te - ts |
| log.info("The PyTorch model execution time per iter is {} milliseconds, " |
| "{} iters per second.".format(total_pytorch_time / main_iters * 1000, |
| main_iters / total_pytorch_time)) |
| return total_pytorch_time * 1000 / main_iters |