| ## @package onnx |
| # Module caffe2.python.onnx.tests.conversion_test |
| |
| |
| |
| |
| |
| import json |
| import tempfile |
| import textwrap |
| import traceback |
| import unittest |
| import zipfile |
| |
| from caffe2.proto import caffe2_pb2 |
| from caffe2.python import brew, core |
| from caffe2.python.model_helper import ModelHelper |
| from click.testing import CliRunner |
| import numpy as np |
| from onnx import helper, ModelProto, TensorProto |
| from caffe2.python.onnx.helper import c2_native_run_net |
| |
| from caffe2.python.onnx.bin.conversion import caffe2_to_onnx, onnx_to_caffe2 |
| import caffe2.python.onnx.backend as c2 |
| from caffe2.python.onnx.tests.test_utils import TestCase |
| |
| |
| class TestConversion(TestCase): |
| def _run_command(self, cmd, *args, **kwargs): |
| runner = CliRunner() |
| result = runner.invoke(cmd, *args, **kwargs) |
| self.assertEqual(result.exit_code, 0, textwrap.dedent(''' |
| Command exited with non-zero exit code: |
| output: {} |
| exception: {} |
| exc_info: {} |
| '''.format(result.output, |
| result.exception, |
| traceback.format_exception(*result.exc_info)))) |
| return result |
| |
| def test_caffe2_to_onnx(self): |
| caffe2_net = tempfile.NamedTemporaryFile() |
| caffe2_init_net = tempfile.NamedTemporaryFile() |
| output = tempfile.NamedTemporaryFile() |
| |
| model = ModelHelper(name='caffe2-to-onnx-test') |
| brew.relu(model, ["X"], "Y") |
| caffe2_net.write(model.net.Proto().SerializeToString()) |
| caffe2_net.flush() |
| |
| init_model = ModelHelper(name='caffe2-to-onnx-init-test') |
| init_model.net.GivenTensorFill([], 'X', shape=[2, 2], |
| values=np.zeros((2, 2)).flatten().astype(float)) |
| caffe2_init_net.write(init_model.net.Proto().SerializeToString()) |
| caffe2_init_net.flush() |
| |
| self._run_command( |
| caffe2_to_onnx, [ |
| caffe2_net.name, |
| '--caffe2-init-net', caffe2_init_net.name, |
| '--output', output.name, |
| ], |
| catch_exceptions=False, |
| ) |
| |
| onnx_model = ModelProto() |
| onnx_model.ParseFromString(output.read()) |
| self.assertEqual(len(onnx_model.graph.node), 1) |
| self.assertEqual(onnx_model.graph.node[0].op_type, 'Relu') |
| self.assertEqual(len(onnx_model.graph.initializer), 1) |
| self.assertEqual(onnx_model.graph.initializer[0].name, onnx_model.graph.input[0].name) |
| |
| def test_caffe2_to_onnx_value_info(self): |
| caffe2_net = tempfile.NamedTemporaryFile() |
| output = tempfile.NamedTemporaryFile() |
| |
| model = ModelHelper(name='caffe2-to-onnx-test') |
| brew.relu(model, ["X"], "Y") |
| caffe2_net.write(model.net.Proto().SerializeToString()) |
| caffe2_net.flush() |
| |
| args = [caffe2_net.name, '--output', output.name] |
| self.assertRaisesRegex(Exception, |
| 'value info', |
| self._run_command, caffe2_to_onnx, args) |
| |
| args.extend([ |
| '--value-info', |
| json.dumps({ |
| 'X': (TensorProto.FLOAT, (2, 2)), |
| })]) |
| self._run_command(caffe2_to_onnx, args) |
| |
| onnx_model = ModelProto() |
| onnx_model.ParseFromString(output.read()) |
| self.assertEqual(len(onnx_model.graph.node), 1) |
| self.assertEqual(onnx_model.graph.node[0].op_type, 'Relu') |
| self.assertEqual(len(onnx_model.graph.initializer), 0) |
| |
| @unittest.skip("Disabled due to onnx optimizer deprecation") |
| def test_onnx_to_caffe2(self): |
| onnx_model = tempfile.NamedTemporaryFile() |
| output = tempfile.NamedTemporaryFile() |
| init_net_output = tempfile.NamedTemporaryFile() |
| |
| node_def = helper.make_node( |
| "Mul", ["X", "W"], ["Y"]) |
| graph_def = helper.make_graph( |
| [node_def], |
| "test", |
| [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), |
| helper.make_tensor_value_info("W", TensorProto.FLOAT, (1, 3))], |
| [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))], |
| initializer=[helper.make_tensor("W", |
| TensorProto.FLOAT, |
| [1, 3], |
| np.zeros((1, 3)).flatten().astype(float))]) |
| model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') |
| onnx_model.write(model_def.SerializeToString()) |
| onnx_model.flush() |
| |
| self._run_command( |
| onnx_to_caffe2, [ |
| onnx_model.name, |
| '--output', output.name, |
| '--init-net-output', init_net_output.name, |
| ]) |
| |
| caffe2_net = caffe2_pb2.NetDef() |
| caffe2_net.ParseFromString(output.read()) |
| self.assertEqual(len(caffe2_net.op), 1) |
| self.assertEqual(caffe2_net.op[0].type, 'Mul') |
| |
| caffe2_init_net = caffe2_pb2.NetDef() |
| caffe2_init_net.ParseFromString(init_net_output.read()) |
| self.assertEqual(len(caffe2_init_net.op), 1) |
| self.assertEqual(set(sum([list(init_op.output) |
| for init_op in caffe2_init_net.op], [])), |
| {'W'}) |
| |
| def test_onnx_to_caffe2_zipfile(self): |
| buf = tempfile.NamedTemporaryFile() |
| onnx_model = zipfile.ZipFile(buf, 'w') |
| |
| node_def = helper.make_node( |
| "MatMul", ["X", "W"], ["Y"]) |
| X = np.random.rand(2, 3).astype(np.float32) |
| W = np.random.rand(3, 2).flatten().astype(np.float32) |
| graph_def = helper.make_graph( |
| [node_def], |
| "test", |
| [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), |
| helper.make_tensor_value_info("W", TensorProto.FLOAT, (3, 2))], |
| [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], |
| initializer=[helper.make_tensor("W", |
| TensorProto.FLOAT, |
| [3, 2], |
| W.tobytes(), |
| raw=True)]) |
| model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') |
| onnx_model.writestr('__MODEL_PROTO', model_def.SerializeToString()) |
| onnx_model.writestr('W', W.tobytes()) |
| onnx_model.close() |
| |
| W = W.reshape((3, 2)) |
| Y_expect = np.matmul(X, W) |
| |
| c2_model = c2.prepare_zip_archive(buf) |
| Y = c2_model.run(X).Y |
| np.testing.assert_allclose(Y, Y_expect) |
| |
| def _make_fake_if_op(self, true_nodes, false_nodes, output_types): |
| true = helper.make_tensor("condition", TensorProto.BOOL, (), [True]) |
| true_graph = helper.make_graph(true_nodes, "true_graph", [], [ |
| helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), |
| ]) |
| false_graph = helper.make_graph(false_nodes, "false_graph", [], [ |
| helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), |
| ]) |
| if_inputs = ["condition"] |
| if_outputs = [name for _, _, name in output_types] |
| retval_nodes = [ |
| helper.make_node("Constant", [], ["condition"], value=true), |
| helper.make_node("If", if_inputs, if_outputs, then_branch=true_graph, |
| else_branch=false_graph) |
| ] |
| return retval_nodes |
| |
| def test_onnx_to_caffe2_if(self): |
| true_nodes = [helper.make_node( |
| "MatMul", ["X", "W"], ["Y"])] |
| false_nodes = [helper.make_node("Slice", ["X"], ["Y"], axes=[0, 1], |
| starts=[0, 0], ends=[2, 2])] |
| nodes = self._make_fake_if_op(true_nodes, false_nodes, [(TensorProto.FLOAT, (2, 2), "Y")]) |
| X = np.random.rand(2, 3).astype(np.float32) |
| W = np.random.rand(3, 2).flatten().astype(np.float32) |
| graph_def = helper.make_graph( |
| nodes, |
| "test", |
| [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), |
| helper.make_tensor_value_info("W", TensorProto.FLOAT, (3, 2))], |
| [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], |
| initializer=[helper.make_tensor("W", |
| TensorProto.FLOAT, |
| [3, 2], |
| W.tolist())] |
| ) |
| onnx_id = helper.make_opsetid("", 9) |
| model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test', |
| opset_imports=[onnx_id]) |
| |
| p = c2.prepare(model_def) |
| Y = np.matmul(X, W.reshape(3, 2)) |
| out = p.run(X) |
| np.testing.assert_allclose(out.Y, Y) |
| |
| # input_types and output_types are lists of triples of (name, type, shape) |
| def _make_fake_loop_op(self, body_nodes, input_types, output_types): |
| ten = helper.make_tensor("trip_count_value", TensorProto.INT64, (1,), [10]) |
| true = helper.make_tensor("condition", TensorProto.BOOL, (1,), [True]) |
| # lcd is a dummy loop-carried dependency that only exists because |
| # right now the schema checker is broken and assumes a variadic |
| # input needs at least one value. |
| graph_inputs = [helper.make_tensor_value_info("i", TensorProto.INT64, (1,)), |
| helper.make_tensor_value_info("cond", TensorProto.BOOL, (1,))] |
| for type, shape, name in input_types: |
| graph_inputs.append(helper.make_tensor_value_info("_" + name, type, shape)) |
| graph_outputs = [helper.make_tensor_value_info("cond", TensorProto.BOOL, (1,))] |
| for type, shape, name in output_types: |
| graph_outputs.append(helper.make_tensor_value_info("_" + name, type, shape)) |
| body_graph = helper.make_graph(body_nodes, "body_graph", graph_inputs, |
| graph_outputs) |
| loop_inputs = ["trip_count", "condition"] |
| loop_inputs.extend([name for _, _, name in input_types]) |
| loop_outputs = [name for _, _, name in output_types] |
| retval_nodes = [ |
| helper.make_node("Constant", [], ["trip_count"], value=ten), |
| helper.make_node("Constant", [], ["condition"], value=true), |
| helper.make_node("Loop", loop_inputs, loop_outputs, body=body_graph) |
| ] |
| return retval_nodes |
| |
| @unittest.skip("Disabled due to onnx optimizer deprecation") |
| def test_onnx_to_caffe2_loop(self): |
| body_nodes = [helper.make_node( |
| "MatMul", ["_X", "W"], ["_Y"])] |
| nodes = self._make_fake_loop_op(body_nodes, |
| [(TensorProto.FLOAT, (2, 2), "X")], |
| [(TensorProto.FLOAT, (2, 2), "Y")]) |
| X = np.random.rand(2, 2).astype(np.float32) |
| W = np.random.rand(2, 2).flatten().astype(np.float32) |
| graph_def = helper.make_graph( |
| nodes, |
| "test", |
| [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 2)), |
| helper.make_tensor_value_info("W", TensorProto.FLOAT, (2, 2))], |
| [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], |
| initializer=[helper.make_tensor("W", |
| TensorProto.FLOAT, |
| [2, 2], |
| W.tolist())] |
| ) |
| model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') |
| Y = X |
| for _ in range(10): |
| Y = np.matmul(Y, W.reshape(2, 2)) |
| p = c2.prepare(model_def) |
| out = p.run(X) |
| np.testing.assert_allclose(out.Y, Y) |
| |
| # TODO investigate why this is failing after changing Reshape |
| # operator from taking the new shape as attribute to as input |
| @unittest.skip('Start failing after Reshape op change') |
| def test_convert_end2end(self): |
| predict_net_f = tempfile.NamedTemporaryFile() |
| init_net_f = tempfile.NamedTemporaryFile() |
| onnx_model_f = tempfile.NamedTemporaryFile() |
| |
| x = 'X' |
| w = 'W' |
| b = 'b' |
| y = 'Y' |
| |
| predict_net = caffe2_pb2.NetDef() |
| predict_net.name = 'test-convert-end2end' |
| predict_net.external_input[:] = [x, w, b] |
| predict_net.external_output[:] = [y] |
| predict_net.op.extend([ |
| core.CreateOperator( |
| 'FC', |
| inputs=[x, w, b], |
| outputs=[y], |
| axis=2, |
| ), |
| ]) |
| predict_net_f.write(predict_net.SerializeToString()) |
| predict_net_f.flush() |
| |
| init_net = caffe2_pb2.NetDef() |
| init_net.name = 'test-convert-end2end-init' |
| init_net.external_output[:] = [w, b] |
| x_val = np.random.randn(1, 3, 2).astype(np.float32) |
| w_val = np.random.randn(4, 2).astype(np.float32) |
| b_val = np.random.randn(4).astype(np.float32) |
| init_net.op.extend([ |
| core.CreateOperator( |
| 'GivenTensorFill', |
| [], |
| [w], |
| values=w_val, |
| shape=w_val.shape, |
| ), |
| core.CreateOperator( |
| 'GivenTensorFill', |
| [], |
| [b], |
| values=b_val, |
| shape=b_val.shape, |
| ), |
| ]) |
| init_net_f.write(init_net.SerializeToString()) |
| init_net_f.flush() |
| |
| y_val = np.matmul(x_val, w_val.transpose()) + b_val |
| for _ in range(5): |
| self._run_command( |
| caffe2_to_onnx, [ |
| predict_net_f.name, |
| '--caffe2-init-net', init_net_f.name, |
| '--output', onnx_model_f.name, |
| '--value-info', |
| json.dumps({ |
| x: (TensorProto.FLOAT, (1, 3, 2)), |
| }), |
| ], |
| catch_exceptions=False, |
| ) |
| |
| onnx_model_f.seek(0) |
| onnx_model = ModelProto() |
| onnx_model.ParseFromString(onnx_model_f.read()) |
| np.testing.assert_almost_equal( |
| c2.run_model( |
| onnx_model, {onnx_model.graph.input[0].name: x_val}), |
| [y_val]) |
| |
| self._run_command( |
| onnx_to_caffe2, [ |
| onnx_model_f.name, |
| '--output', predict_net_f.name, |
| '--init-net-output', init_net_f.name, |
| ]) |
| predict_net_f.seek(0) |
| predict_net = caffe2_pb2.NetDef() |
| predict_net.ParseFromString(predict_net_f.read()) |
| init_net_f.seek(0) |
| init_net = caffe2_pb2.NetDef() |
| init_net.ParseFromString(init_net_f.read()) |
| x = predict_net.external_input[0] |
| np.testing.assert_almost_equal(c2_native_run_net(init_net=init_net, |
| predict_net=predict_net, |
| inputs={x: x_val})[1], |
| [y_val]) |