blob: f93524b2f9d37aa8db3b41e3c73c659c824dd802 [file] [log] [blame]
// Note(jiayq): the import_array function is done inside
// caffe2_python.cc. Read
// http://docs.scipy.org/doc/numpy-1.10.1/reference/c-api.array.html#miscellaneous
// for more details.
#define NO_IMPORT_ARRAY
#include "pybind_state.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <caffe2/ideep/ideep_utils.h>
#include "caffe2/ideep/operators/operator_fallback_ideep.h"
namespace caffe2 {
namespace python {
USE_IDEEP_DEF_ALIASES();
class IDeepFetcher;
class IDeepFeeder;
REGISTER_IDEEP_OPERATOR(Python, IDEEPFallbackOp<PythonOp<CPUContext, false>>);
REGISTER_BLOB_FETCHER((TypeMeta::Id<itensor>()), IDeepFetcher);
REGISTER_BLOB_FEEDER(IDEEP, IDeepFeeder);
class IDeepFetcher : public BlobFetcherBase {
TypeMeta type_transform(const itensor& atensor) {
switch (atensor.get_data_type()) {
case itensor::data_type::f32:
return TypeMeta::Make<float>();
case itensor::data_type::s32:
return TypeMeta::Make<int>();
case itensor::data_type::s8:
return TypeMeta::Make<int8_t>();
case itensor::data_type::u8:
return TypeMeta::Make<uint8_t>();
default:
// Should we throw exception?
return TypeMeta();
}
}
public:
pybind11::object Fetch(const Blob& blob) override {
try {
return FetchTensor(blob.Get<itensor>(), true).obj;
} catch (ideep::error& e) {
LOG(ERROR) << "IDEEP error: " << e.message;
throw;
}
}
FetchedBlob FetchTensor(const itensor& atensor, bool force_copy) {
#ifdef USE_NUMPY
FetchedBlob result;
CAFFE_ENFORCE(
(atensor.ndims() != 0) &&
(atensor.get_nelems() == 0 || atensor.get_data_handle() != nullptr),
"Trying to fetch uninitialized tensor");
// NOTE: Only support float so far.
const int numpy_type = NPY_FLOAT;
CAFFE_ENFORCE(
numpy_type != -1,
"Unsupported ideep memory data type? This usually should not happen "
"since ideep memory usually only do float and double.");
itensor::dims dims;
bool need_reorder = atensor.need_reorder();
if (atensor.get_data_type() == idtype::f32 && !atensor.has_scale()) {
// For FP32 path, only support NCHW format input, so if atensor
// has NHWC format, we need reorder it to NCHW format.
dims = atensor.get_dims();
need_reorder = need_reorder || atensor.get_desc().is_nhwc();
} else {
dims = atensor.get_public_format_dims();
}
std::vector<npy_intp> npy_dims(dims.begin(), dims.end());
result.copied = force_copy || need_reorder;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
void* outPtr;
if (result.copied) {
result.obj = py::reinterpret_steal<py::object>(
PyArray_SimpleNew(atensor.ndims(), npy_dims.data(), numpy_type));
outPtr = static_cast<void*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(result.obj.ptr())));
} else {
outPtr = atensor.get_data_handle();
result.obj = py::reinterpret_steal<py::object>(PyArray_SimpleNewFromData(
atensor.ndims(), npy_dims.data(), numpy_type, outPtr));
}
if (numpy_type == NPY_OBJECT) {
CAFFE_THROW("We don't support strings.");
}
if (result.copied) {
if (atensor.get_data_type() == idtype::f32 && !atensor.has_scale()) {
itensor temp_ten(atensor.get_desc().to_default_format(), outPtr);
atensor.reorder_to(temp_ten);
} else {
atensor.to_public(outPtr);
}
}
return result;
#else
CAFFE_THROW("Caffe2 was compiled without NumPy support.");
#endif // USE_NUMPY
}
};
class IDeepFeeder : public BlobFeederBase {
itensor::data_type type_transform(const TypeMeta meta) {
if (meta == TypeMeta::Make<float>())
return itensor::data_type::f32;
else if (meta == TypeMeta::Make<int>())
return itensor::data_type::s32;
else if (meta == TypeMeta::Make<int8_t>())
return itensor::data_type::s8;
else if (meta == TypeMeta::Make<uint8_t>())
return itensor::data_type::u8;
else
return itensor::data_type::undef;
}
public:
void FeedTensor(
const DeviceOption& option,
PyArrayObject* original_array,
itensor* tensor) {
#ifdef USE_NUMPY
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() { Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta meta = NumpyTypeToCaffe(npy_type);
CAFFE_ENFORCE_NE(
meta,
ScalarType::Undefined,
"This numpy data type is not supported: ",
PyArray_TYPE(array),
".");
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
itensor::dims adims;
for (int i = 0; i < ndim; i++) {
adims.push_back(static_cast<itensor::dims::value_type>(npy_dims[i]));
}
switch (npy_type) {
case NPY_OBJECT:
case NPY_UNICODE:
CAFFE_THROW("IDeep doesn't support string");
break;
default:
auto type = type_transform(meta);
if (tensor->get_dims() != adims || type != tensor->get_data_type()) {
tensor->resize(adims, type);
}
tensor->feed_from(adims, type, static_cast<void*>(PyArray_DATA(array)));
}
#else
CAFFE_THROW("Caffe2 was compiled without NumPy support.");
#endif // USE_NUMPY
}
bool ZeroDim(PyArrayObject* array) {
#ifdef USE_NUMPY
int ndim = PyArray_NDIM(array);
return ndim == 0;
#else
CAFFE_THROW("Caffe2 was compiled without NumPy support.");
#endif
}
void Feed(
const DeviceOption& option,
PyArrayObject* original_array,
Blob* blob,
bool in_place) override {
#ifdef USE_NUMPY
try {
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() { Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta meta = NumpyTypeToCaffe(npy_type);
// TODO: if necessary, use dispatcher.
if ((in_place && blob->IsType<itensor>()) ||
(meta.Match<float>() && !ZeroDim(original_array))) {
FeedTensor(option, original_array, blob->GetMutable<itensor>());
} else {
DeviceOption cpu_option(option);
cpu_option.set_device_type(DeviceTypeProto::PROTO_CPU);
TensorFeeder<CPUContext> cpu_tensor_feeder;
if (in_place) {
cpu_tensor_feeder.FeedTensor(
cpu_option,
original_array,
BlobGetMutableTensor(blob, OptionToDevice(cpu_option).type()),
true);
} else {
blob->Reset<Tensor>(new Tensor(
cpu_tensor_feeder.FeedTensor(cpu_option, original_array)));
}
}
} catch (ideep::error& e) {
LOG(ERROR) << "IDEEP error: " << e.message;
throw;
}
#else
CAFFE_THROW("Caffe2 was compiled without NumPy support.");
#endif
}
};
} // namespace python
} // namespace caffe2