| |
| |
| |
| |
| from caffe2.python import core, workspace |
| from caffe2.python.core import CreatePythonOperator |
| import caffe2.python.hypothesis_test_util as hu |
| from hypothesis import given, settings |
| import hypothesis.strategies as st |
| import numpy as np |
| |
| |
| class CustomError(Exception): |
| pass |
| |
| |
| def SubFunctionThatThrowsCustomError(): |
| raise CustomError("This is an intentional exception.") |
| |
| |
| def MainOpFunctionThatThrowsCustomError(inputs, _): |
| return SubFunctionThatThrowsCustomError() |
| |
| def MainOpFunctionThatThrowsCustomErrorInBuilder(inputs, _): |
| raise CustomError("This is an intentional exception in builder.") |
| |
| def op_builder(name, index, extra): |
| iterations = [0] |
| assert name == 'name' |
| assert index == 5 |
| assert extra - 4.2 < 0.0001 |
| |
| def my_op(inputs, outputs): |
| assert inputs[0].data[0] == iterations[0] |
| assert name == 'name' |
| assert index == 5 |
| assert extra - 4.2 < 0.0001 |
| iterations[0] += 1 |
| |
| return my_op |
| |
| |
| class PythonOpTest(hu.HypothesisTestCase): |
| @given(x=hu.tensor()) |
| def test_feed(self, x): |
| def f(inputs, _): |
| self.assertEqual(x.shape, inputs[0].shape) |
| self.assertEqual(type(inputs[0].shape), tuple) |
| self.assertEqual(type(inputs[0].data), np.ndarray) |
| np.testing.assert_almost_equal(x, inputs[0].data) |
| op = CreatePythonOperator(f, ["x"], []) |
| workspace.FeedBlob("x", x) |
| workspace.RunOperatorOnce(op) |
| |
| def test_exception(self): |
| op = CreatePythonOperator(MainOpFunctionThatThrowsCustomError, [], []) |
| with self.assertRaisesRegex(CustomError, "This is an intentional exception."): |
| workspace.RunOperatorOnce(op) |
| |
| def test_exception_builder(self): |
| op = CreatePythonOperator(MainOpFunctionThatThrowsCustomErrorInBuilder, [], []) |
| with self.assertRaisesRegex(CustomError, "This is an intentional exception in builder."): |
| workspace.RunOperatorOnce(op) |
| |
| @given(x=hu.tensor()) |
| def test_feed_with_helper_function(self, x): |
| def f(inputs, _): |
| self.assertEqual(x.shape, inputs[0].shape) |
| self.assertEqual(type(inputs[0].shape), tuple) |
| self.assertEqual(type(inputs[0].data), np.ndarray) |
| np.testing.assert_almost_equal(x, inputs[0].data) |
| net = core.Net("test") |
| net.Python(f)(["x"], []) |
| workspace.FeedBlob("x", x) |
| workspace.RunNetOnce(net) |
| |
| def test_builder_tuple(self): |
| net = core.Net("builder_template") |
| iter_blob = 'iter' |
| net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], []) |
| net.Python((op_builder, ['name', 5], {'extra': 4.2}))([iter_blob], []) |
| for repeat in range(2): |
| # check that the builder will be called exactly once for each |
| # PythonOp constructor. Cloning the net will also trigger a call |
| # to the builder when the net is created. |
| cloned_net = net.Clone('builder_%d' % repeat) |
| workspace.FeedBlob(iter_blob, np.array([0])) |
| # Builder gets called once per python op in the line below |
| workspace.CreateNet(cloned_net) |
| for i in range(10): |
| workspace.FeedBlob(iter_blob, np.array([i])) |
| workspace.RunNet(cloned_net) |
| |
| @given(x=hu.tensor()) |
| def test_feed_with_gc(self, x): |
| def f(inputs, _): |
| self.assertEqual(x.shape, inputs[0].shape) |
| np.testing.assert_almost_equal(x, inputs[0].data) |
| op = CreatePythonOperator(f, ["x"], []) |
| workspace.FeedBlob("x", x) |
| workspace.RunOperatorOnce(op) |
| del f |
| workspace.FeedBlob("x", x) |
| workspace.RunOperatorOnce(op) |
| |
| @given(x=hu.tensor()) |
| def test_reshape(self, x): |
| def f(inputs, outputs): |
| outputs[0].reshape(inputs[0].shape) |
| self.assertEqual(x.shape, inputs[0].shape) |
| self.assertEqual(x.shape, outputs[0].shape) |
| outputs[0].data[...] = inputs[0].data |
| |
| op = CreatePythonOperator(f, ["x"], ["y"]) |
| workspace.FeedBlob("x", x) |
| workspace.RunOperatorOnce(op) |
| y = workspace.FetchBlob("y") |
| np.testing.assert_almost_equal(x, y) |
| |
| @given(x=hu.tensor()) |
| def test_workspace_manipulation(self, x): |
| """ |
| Verify that python op can manipulate workspace directly |
| """ |
| def f(inputs, outputs, ws): |
| fetched = ws.blobs['internal'].fetch() |
| np.testing.assert_almost_equal(fetched, x) |
| |
| ws = workspace.C.Workspace() |
| net = core.Net("test") |
| net.GivenTensorFill([], ['internal'], values=x, shape=x.shape) |
| net.Python(f, pass_workspace=True)([], []) |
| ws.run(net) |
| |
| @given(x=hu.tensor()) |
| def test_caught_exception_doesnt_terminate(self, x): |
| def f(inputs, outputs): |
| try: |
| raise Exception("Exception in handler") |
| except Exception: |
| pass |
| |
| op = CreatePythonOperator(f, ["x"], ["y"]) |
| workspace.FeedBlob("x", x) |
| workspace.RunOperatorOnce(op) |
| |
| @given(x=hu.tensor(), |
| n=st.integers(min_value=1, max_value=20), |
| w=st.integers(min_value=1, max_value=20)) |
| @settings(deadline=1000) |
| def test_multithreaded_evaluation(self, x, n, w): |
| def f(inputs, outputs): |
| outputs[0].reshape(inputs[0].shape) |
| outputs[0].data[...] = inputs[0].data |
| ops = [CreatePythonOperator(f, ["x"], [str(i)]) for i in range(n)] |
| net = core.Net("net") |
| net.Proto().op.extend(ops) |
| net.Proto().type = "dag" |
| net.Proto().num_workers = w |
| iters = 100 |
| plan = core.Plan("plan") |
| plan.AddStep(core.ExecutionStep("test-step", net, iters)) |
| workspace.FeedBlob("x", x) |
| workspace.RunPlan(plan.Proto().SerializeToString()) |
| for i in range(n): |
| y = workspace.FetchBlob(str(i)) |
| np.testing.assert_almost_equal(x, y) |
| |
| @given(x=hu.tensor(), in_place=st.booleans(), **hu.gcs) |
| @settings(deadline=10000) |
| def test_gradient(self, x, in_place, gc, dc): |
| def f(inputs, outputs): |
| outputs[0].reshape(inputs[0].shape) |
| outputs[0].data[...] = inputs[0].data * 2 |
| |
| def grad_f(inputs, outputs): |
| # Ordering is [inputs, outputs, grad_outputs] |
| grad_output = inputs[2] |
| |
| grad_input = outputs[0] |
| grad_input.reshape(grad_output.shape) |
| grad_input.data[...] = grad_output.data * 2 |
| |
| op = CreatePythonOperator( |
| f, ["x"], ["x" if in_place else "y"], grad_f=grad_f) |
| self.assertGradientChecks(gc, op, [x], 0, [0]) |
| self.assertDeviceChecks(dc, op, [x], [0]) |
| |
| @given(inputs=hu.tensors(n=2), **hu.gcs) |
| @settings(deadline=10000) |
| def test_gradient_multiple(self, inputs, gc, dc): |
| (x1, x2) = inputs |
| |
| def f(inputs, outputs): |
| for idx in [0, 1]: |
| self.assertEqual(type(inputs[idx].shape), tuple) |
| outputs[idx].reshape(inputs[idx].shape) |
| outputs[idx].data[...] = inputs[idx].data * 2 |
| |
| def grad_f(inputs, outputs): |
| # Ordering is [inputs, outputs, grad_outputs] |
| self.assertEqual(len(inputs), 6) |
| self.assertEqual(len(outputs), 2) |
| for (grad_output_idx, grad_input_idx) in [(4, 0), (5, 1)]: |
| grad_output = inputs[grad_output_idx] |
| grad_input = outputs[grad_input_idx] |
| grad_input.reshape(grad_output.shape) |
| grad_input.data[...] = grad_output.data * 2 |
| |
| op = CreatePythonOperator(f, ["x1", "x2"], ["y1", "y2"], grad_f=grad_f) |
| |
| for idx in [0, 1]: |
| self.assertGradientChecks(gc, op, [x1, x2], idx, [0, 1]) |
| self.assertDeviceChecks(dc, op, [x1, x2], [0, 1]) |
| |
| @given(inputs=hu.tensors(n=3), **hu.gcs) |
| @settings(deadline=10000) |
| def test_gradient_multiple_with_indices(self, inputs, gc, dc): |
| (x1, x2, x3) = inputs |
| |
| def f(inputs, outputs): |
| for idx in [0, 1, 2]: |
| self.assertEqual(type(inputs[idx].shape), tuple) |
| outputs[idx].reshape(inputs[idx].shape) |
| outputs[idx].data[...] = inputs[idx].data * 2 |
| |
| def grad_f(inputs, outputs): |
| # Ordering is [inputs, outputs, grad_outputs] |
| self.assertEqual(len(inputs), 8) |
| self.assertEqual(len(outputs), 1) |
| for (grad_output_idx, grad_input_idx) in [(6, 0)]: |
| grad_output = inputs[grad_output_idx] |
| grad_input = outputs[grad_input_idx] |
| grad_input.reshape(grad_output.shape) |
| grad_input.data[...] = grad_output.data * 2 |
| |
| op = CreatePythonOperator( |
| f, ["x1", "x2", "x3"], ["y1", "y2", "y3"], |
| grad_f=grad_f, |
| grad_output_indices=[0, 2], # Receive grad outputs for y1 and y3 |
| grad_input_indices=[0] # Produce grad inputs for x1 |
| ) |
| |
| self.assertGradientChecks(gc, op, [x1, x2, x3], 0, [0, 2]) |
| self.assertDeviceChecks(dc, op, [x1, x2, x3], [0, 1, 2]) |