| |
| |
| |
| |
| from caffe2.python import core, workspace |
| from caffe2.python.test.executor_test_util import ( |
| build_conv_model, |
| build_resnet50_dataparallel_model, |
| run_resnet50_epoch, |
| ExecutorTestBase, |
| executor_test_settings, |
| executor_test_model_names) |
| |
| from caffe2.python.test_util import TestCase |
| |
| from hypothesis import given |
| import hypothesis.strategies as st |
| |
| import unittest |
| |
| |
| EXECUTORS = ["parallel", "async_scheduling"] |
| ITERATIONS = 1 |
| |
| |
| class ExecutorCPUConvNetTest(ExecutorTestBase): |
| @given(executor=st.sampled_from(EXECUTORS), |
| model_name=st.sampled_from(executor_test_model_names()), |
| batch_size=st.sampled_from([1]), |
| num_workers=st.sampled_from([8])) |
| @executor_test_settings |
| def test_executor(self, executor, model_name, batch_size, num_workers): |
| model = build_conv_model(model_name, batch_size) |
| model.Proto().num_workers = num_workers |
| |
| def run_model(): |
| iterations = ITERATIONS |
| if model_name == "MLP": |
| iterations = 1 # avoid numeric instability with MLP gradients |
| workspace.RunNet(model.net, iterations) |
| |
| self.compare_executors( |
| model, |
| ref_executor="simple", |
| test_executor=executor, |
| model_run_func=run_model, |
| ) |
| |
| |
| @unittest.skipIf(not workspace.has_gpu_support, "no gpu") |
| class ExecutorGPUResNetTest(ExecutorTestBase): |
| @given(executor=st.sampled_from(EXECUTORS), |
| num_workers=st.sampled_from([8])) |
| @executor_test_settings |
| def test_executor(self, executor, num_workers): |
| model = build_resnet50_dataparallel_model( |
| num_gpus=workspace.NumGpuDevices(), batch_size=8, epoch_size=8) |
| model.Proto().num_workers = num_workers |
| |
| def run_model(): |
| run_resnet50_epoch(model, batch_size=8, epoch_size=8) |
| |
| self.compare_executors( |
| model, |
| ref_executor="simple", |
| test_executor=executor, |
| model_run_func=run_model, |
| ) |
| |
| |
| class ExecutorFailingOpTest(TestCase): |
| def test_failing_op(self): |
| def create_failing_net(throw_exception): |
| net = core.Net("failing_net") |
| if throw_exception: |
| net.ThrowException([], []) |
| else: |
| net.Fail([], []) |
| net.Proto().type = "async_scheduling" |
| return net |
| |
| workspace.ResetWorkspace() |
| net = create_failing_net(throw_exception=True) |
| workspace.CreateNet(net) |
| with self.assertRaises(RuntimeError): |
| workspace.RunNet(net) |
| |
| with self.assertRaises(RuntimeError): |
| workspace.RunNet(net, allow_fail=True) |
| |
| workspace.ResetWorkspace() |
| net = create_failing_net(throw_exception=False) |
| workspace.CreateNet(net) |
| |
| with self.assertRaises(RuntimeError): |
| workspace.RunNet(net) |
| |
| res = workspace.RunNet(net, allow_fail=True) |
| self.assertFalse(res) |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |