blob: 3d0e399ba73b0ede9f226d3813b2ce783e62f4ac [file] [log] [blame]
#ifndef CAFFE2_FILLER_H_
#define CAFFE2_FILLER_H_
#include <sstream>
#include "caffe2/core/logging.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// TODO: replace filler distribution enum with a better abstraction
enum FillerDistribution { FD_UNIFORM, FD_FIXEDSUM, FD_SYNTHETIC };
class TensorFiller {
public:
template <class Type, class Context>
void Fill(Tensor* tensor, Context* context) const {
CAFFE_ENFORCE(context, "context is null");
CAFFE_ENFORCE(tensor, "tensor is null");
auto min = (min_ < (double)std::numeric_limits<Type>::min())
? std::numeric_limits<Type>::min()
: static_cast<Type>(min_);
auto max = (max_ > (double)std::numeric_limits<Type>::max())
? std::numeric_limits<Type>::max()
: static_cast<Type>(max_);
CAFFE_ENFORCE_LE(min, max);
Tensor temp_tensor(shape_, Context::GetDeviceType());
std::swap(*tensor, temp_tensor);
Type* data = tensor->template mutable_data<Type>();
// select distribution
switch (dist_) {
case FD_UNIFORM: {
math::RandUniform<Type, Context>(
tensor->numel(), min, max, data, context);
break;
}
case FD_FIXEDSUM: {
auto fixed_sum = static_cast<Type>(fixed_sum_);
CAFFE_ENFORCE_LE(min * tensor->numel(), fixed_sum);
CAFFE_ENFORCE_GE(max * tensor->numel(), fixed_sum);
math::RandFixedSum<Type, Context>(
tensor->numel(), min, max, fixed_sum_, data, context);
break;
}
case FD_SYNTHETIC: {
math::RandSyntheticData<Type, Context>(
tensor->numel(), min, max, data, context);
break;
}
}
}
TensorFiller& Dist(FillerDistribution dist) {
dist_ = dist;
return *this;
}
template <class Type>
TensorFiller& Min(Type min) {
min_ = (double)min;
return *this;
}
template <class Type>
TensorFiller& Max(Type max) {
max_ = (double)max;
return *this;
}
template <class Type>
TensorFiller& FixedSum(Type fixed_sum) {
dist_ = FD_FIXEDSUM;
fixed_sum_ = (double)fixed_sum;
return *this;
}
// A helper function to construct the lengths vector for sparse features
// We try to pad least one index per batch unless the total_length is 0
template <class Type>
TensorFiller& SparseLengths(Type total_length) {
return FixedSum(total_length)
.Min(std::min(static_cast<Type>(1), total_length))
.Max(total_length);
}
// a helper function to construct the segments vector for sparse features
template <class Type>
TensorFiller& SparseSegments(Type max_segment) {
CAFFE_ENFORCE(dist_ != FD_FIXEDSUM);
return Min(0).Max(max_segment).Dist(FD_SYNTHETIC);
}
TensorFiller& Shape(const std::vector<int64_t>& shape) {
shape_ = shape;
return *this;
}
template <class Type>
TensorFiller(const std::vector<int64_t>& shape, Type fixed_sum)
: shape_(shape), dist_(FD_FIXEDSUM), fixed_sum_((double)fixed_sum) {}
TensorFiller(const std::vector<int64_t>& shape)
: shape_(shape), dist_(FD_UNIFORM), fixed_sum_(0) {}
TensorFiller() : TensorFiller(std::vector<int64_t>()) {}
std::string DebugString() const {
std::stringstream stream;
stream << "shape = [" << shape_ << "]; min = " << min_
<< "; max = " << max_;
switch (dist_) {
case FD_FIXEDSUM:
stream << "; dist = FD_FIXEDSUM";
break;
case FD_SYNTHETIC:
stream << "; dist = FD_SYNTHETIC";
break;
default:
stream << "; dist = FD_UNIFORM";
break;
}
return stream.str();
}
private:
std::vector<int64_t> shape_;
// TODO: type is unknown until a user starts to fill data;
// cast everything to double for now.
double min_ = 0.0;
double max_ = 1.0;
FillerDistribution dist_;
double fixed_sum_;
};
} // namespace caffe2
#endif // CAFFE2_FILLER_H_