blob: 083da86a1e19b79a9d3d124221f3e92d27c7316b [file] [log] [blame]
import functools
import inspect
import itertools
import logging
import math
import operator
import types
from typing import Dict, List
import numpy as np
import torch
from torch.fx.experimental.symbolic_shapes import sym_float, sym_int
from .. import config, variables
from ..allowed_functions import is_allowed
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder
from ..replay_record import DummyModule
from ..source import AttrSource, is_constant_source, TypeSource
from ..utils import (
check_constant_args,
check_unspec_python_args,
istype,
proxy_args_kwargs,
specialize_args_kwargs,
)
from .base import MutableLocal, VariableTracker
from .dicts import ConstDictVariable
from .tensor import DynamicShapeVariable, FakeItemVariable, UnspecializedPythonVariable
log = logging.getLogger(__name__)
class BuiltinVariable(VariableTracker):
@staticmethod
@functools.lru_cache(None)
def _constant_fold_functions():
fns = {
abs,
all,
any,
bool,
callable,
chr,
dict,
divmod,
float,
int,
len,
list,
max,
min,
ord,
pow,
repr,
round,
set,
str,
str.format,
sum,
tuple,
type,
operator.pos,
operator.neg,
operator.not_,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.sub,
operator.getitem,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
operator.index,
}
fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
return fns
def can_constant_fold_through(self):
return self.fn in self._constant_fold_functions()
@staticmethod
@functools.lru_cache(None)
def _fx_graph_functions():
fns = {
operator.pos,
operator.neg,
operator.not_,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.sub,
operator.getitem,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
}
return fns
def can_insert_in_graph(self):
return self.fn in self._fx_graph_functions()
def __init__(self, fn, **kwargs):
super(BuiltinVariable, self).__init__(**kwargs)
self.fn = fn
def __str__(self):
if self.fn is None:
name = "None"
else:
name = self.fn.__name__
return f"{self.__class__.__name__}({name})"
def python_type(self):
return type(self.fn)
def as_python_constant(self):
return self.fn
def reconstruct(self, codegen):
name = self.fn.__name__
assert self.fn.__module__ == "builtins"
assert name not in codegen.tx.f_globals, "shadowed global"
return [codegen.create_load_global(name, add=True)]
def constant_args(self, *args, **kwargs):
return check_constant_args(args, kwargs)
def tensor_args(self, *args, **kwargs):
return any(
isinstance(i, variables.TensorVariable)
for i in itertools.chain(args, kwargs.values())
) and not any(
isinstance(i, variables.GetAttrVariable)
for i in itertools.chain(args, kwargs.values())
)
def unspec_numpy_args(self, *args, **kwargs):
return all(
isinstance(
i,
(
variables.UnspecializedNumpyVariable,
variables.UnspecializedPythonVariable,
variables.ConstantVariable,
),
)
for i in itertools.chain(args, kwargs.values())
) and any(
isinstance(x, variables.UnspecializedNumpyVariable)
for x in itertools.chain(args, kwargs.values())
)
def unspec_python_args(self, *args, **kwargs):
return check_unspec_python_args(args, kwargs)
@staticmethod
def unwrap_unspec_args_kwargs(args, kwargs):
unwrapped_args = []
unwrapped_kwargs = {}
for x in args:
if isinstance(
x,
(
variables.UnspecializedNumpyVariable,
variables.UnspecializedPythonVariable,
),
):
unwrapped_args.append(x.raw_value)
else:
unwrapped_args.append(x.as_python_constant())
for k, v in kwargs:
if isinstance(
x,
(
variables.UnspecializedNumpyVariable,
variables.UnspecializedPythonVariable,
),
):
unwrapped_kwargs.update({k: v.raw_value})
else:
unwrapped_kwargs.update({k: v.as_python_constant()})
return unwrapped_args, unwrapped_kwargs
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
constant_args = check_constant_args(args, kwargs)
tensor_args = self.tensor_args(*args, **kwargs)
unspec_python_args = self.unspec_python_args(*args, **kwargs)
options = VariableTracker.propagate(self, args, kwargs.values())
has_constant_handler = self.can_constant_fold_through() and (
constant_args or unspec_python_args
)
assert isinstance(args, (list, tuple))
assert isinstance(kwargs, dict)
if (
self.fn is operator.getitem
and len(args) == 2
and isinstance(args[1], variables.TensorVariable)
and args[1].dtype == torch.bool
and not config.dynamic_shapes
):
unimplemented("dynamic Tensor.__getitem__(bool[])")
# args[0] is list and args[1] is unspec
if self.fn is operator.getitem and not isinstance(
args[0], variables.TensorVariable
):
tensor_args = False
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
if (
self.can_insert_in_graph()
and tensor_args
and not (
self.fn is operator.getitem
and isinstance(args[0], ConstDictVariable)
and isinstance(args[1], variables.TensorVariable)
)
):
try:
fn = self.fn
if self.fn is operator.iadd and isinstance(
args[0], variables.ConstantVariable
):
# Work around weird bug in hf_T5
fn, args = operator.add, [args[1], args[0]]
proxy = tx.output.create_proxy(
"call_function",
fn,
*proxy_args_kwargs(args, kwargs),
)
if any([isinstance(arg, FakeItemVariable) for arg in args]):
return wrap_fx_proxy_cls(
FakeItemVariable,
tx,
proxy,
**options,
)
elif self.unspec_numpy_args(*args, **kwargs):
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
raw_value = self.fn(*_args, **_kwargs)
return wrap_fx_proxy_cls(
variables.UnspecializedNumpyVariable,
tx,
proxy,
raw_value=raw_value,
**options,
)
elif self.unspec_python_args(*args, **kwargs):
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
raw_value = self.fn(*_args, **_kwargs)
need_unwrap = any(
x.need_unwrap
for x in itertools.chain(args, kwargs.values())
if isinstance(x, variables.UnspecializedPythonVariable)
)
return wrap_fx_proxy_cls(
UnspecializedPythonVariable,
tx,
proxy,
raw_value=raw_value,
need_unwrap=need_unwrap,
**options,
)
else:
# Work around for vision_maskrcnn due to precision difference
# specialize the dividend when float divide by tensor
if self.fn is operator.truediv and isinstance(
args[0], variables.UnspecializedPythonVariable
):
args[0] = args[0].convert_to_constant(tx)
return wrap_fx_proxy(tx, proxy, **options)
except NotImplementedError:
unimplemented(f"partial tensor op: {self} {args} {kwargs}")
# Handle cases like int(torch.seed())
# Also handle sym_float to sym_int cases
if self.fn in (int, float) and isinstance(args[0], DynamicShapeVariable):
fn_ = sym_int if self.fn is int else sym_float
out = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
(args[0].as_proxy(),),
{},
),
**options,
)
return out
handler = getattr(self, f"call_{self.fn.__name__}", None)
if handler:
try:
inspect.signature(handler).bind(tx, *args, **kwargs)
except TypeError as exc:
if not has_constant_handler:
log.warning(
f"incorrect arg count {handler} {exc} and no constant handler"
)
handler = None
if handler:
try:
result = handler(tx, *args, **kwargs)
if result is not None:
return result.add_options(options)
except Unsupported as exc:
if not has_constant_handler:
raise
# Actually, we will handle this just fine
exc.remove_from_stats()
if has_constant_handler:
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
# constant fold
return variables.ConstantVariable(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
**options,
)
return super().call_function(tx, args, kwargs)
def _call_min_max(self, tx, a, b):
if self.tensor_args(a, b):
if not isinstance(a, variables.TensorVariable):
a, b = b, a
assert isinstance(a, variables.TensorVariable)
# result of an item call is a scalar convert to a tensor
if isinstance(a, FakeItemVariable):
a = variables.TorchVariable(torch.tensor).call_function(tx, [a], {})
# Dynamic input does not get resolved, rather, gets stored as call_function
if isinstance(a, DynamicShapeVariable):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.fn,
*proxy_args_kwargs([a, b], {}),
),
**VariableTracker.propagate(self, [a, b]),
)
# convert min/max to torch ops
if b.is_python_constant():
kwargs = {"min": b} if (self.fn is max) else {"max": b}
result = variables.TorchVariable(torch.clamp).call_function(
tx, [a], kwargs
)
else:
fn = {max: torch.maximum, min: torch.minimum}[self.fn]
result = variables.TorchVariable(fn).call_function(tx, [a, b], {})
# return unspec if both a, b are unspec or const
if all(
isinstance(
i,
(
variables.UnspecializedNumpyVariable,
variables.UnspecializedPythonVariable,
variables.ConstantVariable,
),
)
for i in [a, b]
):
if any([isinstance(val, FakeItemVariable) for val in [a, b]]):
return variables.FakeItemVariable.from_tensor_variable(result)
if b.is_python_constant():
raw_b = b.as_python_constant()
else:
raw_b = b.raw_value
if self.fn is max:
raw_res = max(a.raw_value, raw_b)
else:
raw_res = min(a.raw_value, raw_b)
if isinstance(raw_res, np.number):
return variables.UnspecializedNumpyVariable.from_tensor_variable(
result, raw_res
)
else:
need_unwrap = any(
x.need_unwrap
for x in [a, b]
if isinstance(x, variables.UnspecializedPythonVariable)
)
return variables.UnspecializedPythonVariable.from_tensor_variable(
result, raw_res, need_unwrap
)
# otherwise return tensor
else:
return result
elif isinstance(a, variables.ConstantVariable) and isinstance(
b, variables.ConstantVariable
):
if self.fn is max:
return variables.ConstantVariable(max(a.value, b.value))
else:
return variables.ConstantVariable(min(a.value, b.value))
elif isinstance(a, DynamicShapeVariable) or isinstance(b, DynamicShapeVariable):
proxy = tx.output.create_proxy(
"call_function", self.fn, *proxy_args_kwargs([a, b], {})
)
return DynamicShapeVariable.create(tx, proxy, None)
else:
unimplemented(f"unsupported min / max over args {str(a)}, {str(b)}")
call_min = _call_min_max
call_max = _call_min_max
def call_range(self, tx, *args):
if self.unspec_python_args(*args) or self.constant_args(*args):
args, _ = specialize_args_kwargs(tx, args, {})
return variables.RangeVariable(args)
elif self._dynamic_args(*args):
def guard_if_dyn(arg):
if isinstance(arg, DynamicShapeVariable):
return arg.evaluate_expr(tx.output)
return arg
args = [variables.ConstantVariable(guard_if_dyn(arg)) for arg in args]
return variables.RangeVariable(args)
# None no-ops this handler and lets the driving function proceed
return None
def _dynamic_args(self, *args, **kwargs):
return any([isinstance(x, DynamicShapeVariable) for x in args]) or any(
[isinstance(x, DynamicShapeVariable) for x in kwargs.values()]
)
def call_slice(self, tx, *args):
return variables.SliceVariable(args)
def _dyn_proxy(self, tx, *args, **kwargs):
assert self._dynamic_args(*args, **kwargs)
from .builder import wrap_fx_proxy
options = VariableTracker.propagate(self, args, kwargs.values())
return wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function", self.fn, *proxy_args_kwargs(args, kwargs)
),
**options,
)
def call_mod(self, tx, *args, **kwargs):
if self._dynamic_args(*args, **kwargs):
return self._dyn_proxy(tx, *args, **kwargs)
def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
if self._dynamic_args(*args, **kwargs):
return self._dyn_proxy(tx, *args, **kwargs)
cls = variables.BaseListVariable.cls_for(self.fn)
if obj is None:
return cls(
[],
mutable_local=MutableLocal(),
)
elif obj.has_unpack_var_sequence(tx):
guards = set()
if obj.source and not is_constant_source(obj.source):
guards.add(obj.source.make_guard(GuardBuilder.LIST_LENGTH))
return cls(
list(obj.unpack_var_sequence(tx)),
mutable_local=MutableLocal(),
guards=guards,
).add_options(self, obj)
call_iter = _call_iter_tuple_list
call_tuple = _call_iter_tuple_list
call_list = _call_iter_tuple_list
def call_dict(self, tx, arg):
if isinstance(arg, variables.ConstDictVariable):
return arg.clone(mutable_local=MutableLocal())
def call_zip(self, tx, *args):
options = VariableTracker.propagate(self, args)
if all(x.has_unpack_var_sequence(tx) for x in args):
items = [
variables.TupleVariable(list(item), **options)
for item in zip(*[arg.unpack_var_sequence(tx) for arg in args])
]
return variables.TupleVariable(items, **options)
def call_enumerate(self, tx, *args):
options = VariableTracker.propagate(self, args)
if len(args) == 1:
start = 0
else:
assert len(args) == 2
assert isinstance(args[1], variables.ConstantVariable)
start = args[1].as_python_constant()
if args[0].has_unpack_var_sequence(tx):
items = [
variables.TupleVariable(
[variables.ConstantVariable(idx, **options), var],
**options,
)
for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
]
return variables.TupleVariable(items, **options)
def call_mul(self, tx, a, b):
if isinstance(
a, (variables.ListVariable, variables.TupleVariable)
) and isinstance(b, variables.ConstantVariable):
return a.__class__(
items=a.items * b.as_python_constant(), mutable_local=MutableLocal()
).add_options(self, a, b)
elif isinstance(
b, (variables.ListVariable, variables.TupleVariable)
) and isinstance(a, variables.ConstantVariable):
return b.__class__(
items=b.items * a.as_python_constant(), mutable_local=MutableLocal()
).add_options(self, a, b)
# TODO this doesn't generalize in other builtin operators.
elif isinstance(a, variables.ConstantVariable) and isinstance(
b, DynamicShapeVariable
):
return b.call_method(tx, "__rmul__", [a], {})
else:
return a.call_method(tx, "__mul__", [b], {})
def call_len(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__len__", args[1:], kwargs)
def call_add(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__add__", args[1:], kwargs)
def call_sub(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__sub__", args[1:], kwargs)
def call_truediv(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__truediv__", args[1:], kwargs)
def call_floordiv(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__floordiv__", args[1:], kwargs)
def call_iadd(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__iadd__", args[1:], kwargs)
def call_getitem(self, tx, *args, **kwargs):
if self.unspec_python_args(*args, **kwargs):
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
def call_isinstance(self, tx, arg, isinstance_type):
arg_type = arg.python_type()
isinstance_type = isinstance_type.as_python_constant()
if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
return variables.ConstantVariable(arg.call_isinstance(isinstance_type))
# UserDefinedObject with C extensions can have torch.Tensor attributes,
# so break graph.
if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
arg.value, types.MemberDescriptorType
):
unimplemented(
f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
)
try:
val = issubclass(arg_type, isinstance_type)
except TypeError:
val = arg_type is isinstance_type
return variables.ConstantVariable(val)
def call_super(self, tx, a, b):
return variables.SuperVariable(a, b)
def call_next(self, tx, arg):
if isinstance(arg, variables.ListIteratorVariable):
val, next_iter = arg.next_variables()
tx.replace_all(arg, next_iter)
return val
elif isinstance(arg, variables.BaseListVariable):
return arg.items[0].add_options(self, arg)
def call_hasattr(self, tx, obj, attr):
if attr.is_python_constant():
name = attr.as_python_constant()
return obj.call_hasattr(tx, name).add_options(self, obj, attr)
def call_map(self, tx, fn, seq):
if seq.has_unpack_var_sequence(tx):
items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
return variables.TupleVariable(items).add_options(self, fn, seq)
def call_sum(self, tx, seq, **kwargs):
# Special case for sum on tuple of floats and ints
if (
isinstance(seq, (variables.ListVariable, variables.TupleVariable))
and all(
[
isinstance(x, variables.ConstantVariable)
and isinstance(x.value, (int, float))
for x in seq.items
]
)
and not kwargs
):
new_list = [x.value for x in seq.items]
return variables.ConstantVariable(sum(new_list))
if seq.has_unpack_var_sequence(tx):
start = kwargs.pop(
"start", variables.ConstantVariable(0)
).as_python_constant()
assert not kwargs
items = seq.unpack_var_sequence(tx)[start:]
return BuiltinVariable(functools.reduce).call_function(
tx,
[
BuiltinVariable(operator.add),
variables.TupleVariable(items),
variables.ConstantVariable(0).add_options(self, seq),
],
{},
)
def call_reduce(self, tx, function, iterable, initializer=None):
if iterable.has_unpack_var_sequence(tx):
items = iterable.unpack_var_sequence(tx)
if initializer is None:
value, items = items[0], items[1:]
else:
value = initializer
for element in items:
value = function.call_function(tx, [value, element], {})
return value
def call_getattr(
self, tx, obj: VariableTracker, name_var: VariableTracker, default=None
):
from . import (
ConstantVariable,
GetAttrVariable,
PythonModuleVariable,
TorchVariable,
UserFunctionVariable,
)
from .builder import VariableBuilder
options = VariableTracker.propagate(self, obj, name_var)
guards = options["guards"]
name = name_var.as_python_constant()
if not name_var.is_python_constant():
unimplemented("non-const getattr() name")
if tx.output.side_effects.is_attribute_mutation(obj):
try:
# re-read a pending side effect?
return tx.output.side_effects.load_attr(obj, name).add_options(options)
except KeyError:
pass
if default is not None:
hasattr_var = self.call_hasattr(tx, obj, name_var)
guards.update(hasattr_var.guards)
assert hasattr_var.as_python_constant() in (True, False)
if not hasattr_var.as_python_constant():
return default.add_guards(guards)
if obj.source:
source = AttrSource(obj.source, name)
options["source"] = source
else:
source = None
if isinstance(obj, variables.NNModuleVariable):
return obj.var_getattr(tx, name).add_options(options)
elif isinstance(obj, variables.TensorVariable) and name == "grad":
if source:
# We are going to be raising this tensor as grapharg. So, ensure
# that we have real grad value instead of fake tensor value.
# Walk through the inputs of the subgraph and find if we already
# have the original tensor stored in the graphargs.
for grapharg in tx.output.graphargs:
if grapharg.source == source.base:
example_value = grapharg.example.grad
return VariableBuilder(tx, source)(example_value).add_options(
options
)
unimplemented("tensor grad")
else:
unimplemented("tensor grad")
elif isinstance(
obj,
(
variables.TensorVariable,
variables.NamedTupleVariable,
variables.ConstantVariable,
variables.UserDefinedClassVariable,
variables.UserDefinedObjectVariable,
),
):
try:
return (
obj.var_getattr(tx, name).clone(source=source).add_options(options)
)
except NotImplementedError:
return GetAttrVariable(obj, name, **options)
elif isinstance(obj, TorchVariable):
member = getattr(obj.value, name)
if is_allowed(member):
return TorchVariable(member, **options)
elif ConstantVariable.is_literal(member):
return ConstantVariable(member, **options)
else:
return VariableBuilder(tx, source)(member).add_guards(guards)
elif isinstance(obj, (PythonModuleVariable, DummyModule)):
member = obj.value.__dict__[name]
if config.replay_record_enabled:
tx.exec_recorder.record_module_access(obj.value, name, member)
return VariableBuilder(tx, source)(member).add_guards(guards)
elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
return ConstantVariable(
getattr(obj.fn, name), **VariableTracker.propagate(obj)
)
else:
try:
return (
obj.var_getattr(tx, name).clone(source=source).add_options(options)
)
except NotImplementedError:
return GetAttrVariable(obj, name, **options)
def call_setattr(
self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker
):
if isinstance(obj, (variables.BlackHoleVariable, variables.DataClassVariable)):
return obj.call_method(tx, "__setattr__", [name_var, val], {})
elif (
tx.output.side_effects.is_attribute_mutation(obj)
and name_var.is_python_constant()
):
tx.output.side_effects.store_attr(obj, name_var.as_python_constant(), val)
return val.add_options(self, obj, name_var)
elif isinstance(obj, variables.UserDefinedObjectVariable):
unimplemented(
f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
)
elif isinstance(obj, variables.NNModuleVariable):
obj.convert_to_unspecialized(tx)
def call_type(self, tx, obj: VariableTracker):
from .builder import VariableBuilder
try:
py_type = obj.python_type()
except NotImplementedError:
py_type = None
if istype(obj, variables.TupleVariable):
return BuiltinVariable(py_type).add_options(self, obj)
if py_type is not None and obj.source:
return VariableBuilder(tx, TypeSource(obj.source))(py_type).add_options(
self, obj
)
unimplemented(f"type({obj})")
def call_reversed(self, tx, obj: VariableTracker):
if obj.has_unpack_var_sequence(tx):
items = list(reversed(obj.unpack_var_sequence(tx)))
return variables.TupleVariable(
items, **VariableTracker.propagate(self, obj)
)
def call_chain(self, tx, *args):
if all(obj.has_unpack_var_sequence(tx) for obj in args):
items = []
for obj in args:
items.extend(obj.unpack_var_sequence(tx))
return variables.TupleVariable(
items, **VariableTracker.propagate(self, *args)
)
def call_islice(self, tx, iterable, *args):
if iterable.has_unpack_var_sequence(tx) and all(
x.is_python_constant() for x in args
):
const_args = [x.as_python_constant() for x in args]
items = iterable.unpack_var_sequence(tx)
items = list(itertools.islice(items, *const_args))
return variables.TupleVariable(
items, **VariableTracker.propagate(self, iterable, *args)
)
def call_id(self, tx, *args):
if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
nn_mod_variable = args[0]
mod = tx.output.get_submodule(nn_mod_variable.module_key)
return variables.ConstantVariable(id(mod))
else:
unimplemented(f"call_id with args {args}")