blob: d42760fc2686404be384da6b5f815e375d10c77a [file] [log] [blame]
import operator
from typing import Dict, List
import torch
from .. import variables
from ..exc import unimplemented
from ..utils import istype
from .base import typestr, VariableTracker
class ConstantVariable(VariableTracker):
def __init__(self, value, **kwargs):
super(ConstantVariable, self).__init__(**kwargs)
assert not isinstance(value, torch.Tensor)
assert not isinstance(value, torch.SymInt)
assert not isinstance(value, torch.SymFloat)
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
# return f"ConstantVariable({self.value})"
return f"ConstantVariable({type(self.value).__name__})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
@property
def items(self):
"""
Need this when adding a BaseListVariable and a ConstantVariable together.
Happens in detectron2.
"""
return self.unpack_var_sequence(tx=None)
def getitem_const(self, arg: VariableTracker):
return ConstantVariable(
self.value[arg.as_python_constant()],
**VariableTracker.propagate([self, arg]),
)
@staticmethod
def is_literal(obj):
if type(obj) in (int, float, bool, type(None), str):
return True
if type(obj) in (list, tuple, set, frozenset):
return all(ConstantVariable.is_literal(x) for x in obj)
return False
def unpack_var_sequence(self, tx):
try:
options = VariableTracker.propagate([self])
return [ConstantVariable(x, **options) for x in self.as_python_constant()]
except TypeError as e:
raise NotImplementedError from e
def const_getattr(self, tx, name):
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError()
return member
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from .tensor import DynamicShapeVariable
options = VariableTracker.propagate(self, args, kwargs.values())
if istype(self.value, tuple):
# empty tuple constant etc
return variables.TupleVariable(
items=self.unpack_var_sequence(tx), source=self.source, **options
).call_method(tx, name, args, kwargs)
if any([isinstance(x, DynamicShapeVariable) for x in args]):
# NOTE! DANGER! THIS ONLY WORKS FOR COMMUTATIVE OPS
# we are relying on add to have arg[0] be a DynamicShapeVariable
# because we are in ConstantVariable land
# This transforms
# constant + dynamic
# into
# dynamic + constant
# Which already has infra built for writing to the graph
if name == "__add__":
assert len(args) == 1
return args[0].call_method(tx, name, [self], {})
# Unfortunate constant
return super(ConstantVariable, self).call_method(tx, name, args, kwargs)
try:
const_args = [a.as_python_constant() for a in args]
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
except NotImplementedError:
return super(ConstantVariable, self).call_method(tx, name, args, kwargs)
def has_arith_binop(num_ty):
return (
isinstance(self.value, num_ty)
and hasattr(operator, name)
and len(args) == 1
and args[0].is_python_constant()
)
if isinstance(self.value, str) and name in str.__dict__.keys():
assert not kwargs
method = getattr(self.value, name)
return ConstantVariable(method(*const_args, **const_kwargs), **options)
elif has_arith_binop(int) or has_arith_binop(float):
op = getattr(operator, name)
add_target = const_args[0]
if isinstance(add_target, (torch.SymInt, torch.SymFloat)):
from .tensor import DynamicShapeVariable
# Addition between a non sym and sym makes a sym
# dyn_shape = tx.output.register_attr_or_module(
# add_target, f"sym_shape_{add_target}", source=None
# )
proxy = tx.output.create_proxy(
"call_function", op, (self.value, add_target), {}
)
return DynamicShapeVariable.create(tx, proxy, add_target, **options)
return ConstantVariable(op(self.value, add_target), **options)
elif name == "__len__" and not (args or kwargs):
return ConstantVariable(len(self.value), **options)
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
assert not kwargs
search = args[0].as_python_constant()
result = search in self.value
return ConstantVariable(result, **options)
unimplemented(f"const method call {typestr(self.value)}.{name}")
class EnumVariable(VariableTracker):
def __init__(self, value, **kwargs):
super(EnumVariable, self).__init__(**kwargs)
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
return f"EnumVariable({type(self.value)})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value