blob: 0fdbb3b0ec50ba3e2daa8957ee16f370b4980a27 [file] [log] [blame]
from torchgen.model import (
Argument,
DispatchKey,
FunctionSchema,
BaseType,
BaseTy,
Return,
Annotation,
NativeFunction,
OperatorName,
BackendIndex,
BackendMetadata,
DeviceCheckType,
SchemaKind,
Variant,
)
from torchgen.utils import (
concatMap,
)
from typing import List, Tuple, Sequence, Dict
from collections import defaultdict
# See Note: [Out ops with functional variants that don't get grouped properly]
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
# This has a functional variant, but it's currently marked private.
# This function should be marked private as well (*_backward ops aren't exposed to python anyway).
"adaptive_avg_pool3d_backward.grad_input",
# There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly.
# Maybe we can kill this operator in favor of convolution_backward?
"_slow_conv2d_backward.grad_input",
]
# See Note: [Mutable ops that cannot get an out variant]
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
# should be out=?
"_cummax_helper",
# should be out=?
"_cummin_helper",
]
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
# polygamma and polygamma.out both exist, but have a
# pre-self arg (while polygamma_ does not)
# We should either fix this schema so it can be grouped properly,
# or allow the codegen to generate new functional/out= NativeFunctions for this op
# (which would require changing its overload name to prevent overload ambiguity).
"polygamma_"
]
# Groups "similar" NativeFunctions together
# example add.Tensor, add_.Tensor, add.out
# "similar" NativeFunctions are all expected to have an identical `signature()`,
# But have differing SchemaKinds.
def pre_group_native_functions(
native_functions: Sequence[NativeFunction],
) -> Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]:
pre_grouped_native_functions: Dict[
FunctionSchema, Dict[SchemaKind, NativeFunction]
] = defaultdict(dict)
for f in native_functions:
d = pre_grouped_native_functions[f.func.signature()]
assert f.func.kind() not in d
d[f.func.kind()] = f
return pre_grouped_native_functions
# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant
# Example before:
# _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
# Example after:
# _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out)
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema:
# Generating an out= schema from an inplace schema.
assert func.kind() == SchemaKind.inplace
assert func.arguments.self_arg is not None
# The new out= schema has:
# - a new out argument with the same type as "func" (but with a mutable annotation)
# - The returns (if any) now alias the out= argument instead of "func"
# - an "out" overload name
return FunctionSchema(
name=func.name.remove_inplace().with_overload(
"out" if not func.name.overload_name else f"{func.name.overload_name}_out"
),
arguments=func.arguments.remove_self_annotation().with_out_args(
[
Argument(
name="out",
type=func.arguments.self_arg.argument.type,
default=None,
annotation=func.arguments.self_arg.argument.annotation,
)
]
),
returns=func.returns,
)
# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant
# Example before:
# _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950
# Example after:
# _fused_moving_avg_obs_fq_helper.out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema:
# Generating an out= schema from a mutable schema.
assert func.kind() == SchemaKind.mutable
# The new out= schema has:
# - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments
# (if the argument is a tensor then we also return it for method chaining,
# otherwise we return nothing)
# - an "out" overload name
#
# Note that:
# (1) This also means that we can *only* generate an out= variant from a mutable schema
# if the mutable schema has at least one tensor-like non-aliasing return.
# (2) The generated out= variant still has mutable positional arguments,
# but if necessary we could probably add another out= variant that also
# functionalizes the mutable arguments (a functional_out variant)
# More of a sanity check - our existing restrictions on schemas should enforce that
# mutable schema kinds never return their mutable arguments.
assert not any(
r.annotation is not None and r.annotation.is_write for r in func.returns
)
tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()]
assert len(tensorlike_rets) > 0
used_annotations = concatMap(
lambda a: [] if a.annotation is None else a.annotation.alias_set,
func.arguments.flat_all,
)
valid_annotations = [
x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations
]
all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns)
new_out_args: List[Argument] = []
# The end result of new_returns is that:
# - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added.
# - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any).
new_returns: List[Return] = []
for (i, r) in enumerate(func.returns):
if r.type.is_tensor_like():
new_out = Argument(
name=f"out{i}",
type=r.type,
default=None,
annotation=Annotation.parse(f"{valid_annotations[i]}!"),
)
new_out_args.append(new_out)
if all_rets_are_tensors:
# The convention for out= schemas is that they only return their out arguments
# if the return is a plain Tensor (or if it's a tuple of plain Tensors)
new_ret = Return(
name=None, type=new_out.type, annotation=new_out.annotation
)
new_returns.append(new_ret)
else:
new_returns.append(r)
return FunctionSchema(
name=func.name.remove_inplace().with_overload(
"out" if not func.name.overload_name else f"{func.name.overload_name}_out"
),
arguments=func.arguments.with_out_args(new_out_args),
returns=tuple(new_returns),
)
# This function, given function of one SchemaKind, as well as a target SchemaKind,
# generates a new NativeFunction with the same properties, but using the target SchemaKind.
# We only actually generate functions for either functional or out= SchemaKinds.
# This function returns a tuple, with:
# - The generated NativeFunction
# - a dictionary of `BackendIndex` objects, describing which dispatch keys
# we will generate kernels for, for the new NativeFunction.
# Details are in the function, but we only generate composite kernels (in some cases) today.
def generate_function(
f: NativeFunction, k: SchemaKind
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]:
from torchgen.api import cpp
if k == SchemaKind.functional:
assert f.func.kind() != SchemaKind.functional
gets_composite_kernel = True
# The new "functional" NativeFunction has:
# - any mutable arguments have been converted into (immutable) returns.
# (if a mutable argument was not also a return, it gets converted to one)
# - a "functional" overload name.
# The default grouping logic in signature() actually already does this,
# so we can piggy-back off it (but we still want return names)
func = f.func.signature(keep_return_names=True).with_name(
f.func.name.remove_inplace().with_overload(
"functional"
if not f.func.name.overload_name
else f"{f.func.name.overload_name}_functional"
)
)
elif k == SchemaKind.out:
# We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
# but at least today, there is no good reason to actually use them.
# we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
gets_composite_kernel = False
if f.func.kind() == SchemaKind.inplace:
func = self_to_out_signature(f.func)
elif f.func.kind() == SchemaKind.mutable:
func = mutable_to_out_signature(f.func)
else:
raise AssertionError(
"We only bother generating out= functions from either inplace or mutable variants"
)
else:
raise AssertionError(
"We currently only generate either functional or out= NativeFunctions"
)
if gets_composite_kernel:
backend_metadata = {
DispatchKey.CompositeExplicitAutograd: {
func.name: BackendMetadata(cpp.name(func), structured=False)
}
}
else:
backend_metadata = {}
return (
NativeFunction(
func=func,
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
# These generated fn's aren't meant to be user friendly- don't generate methods.
variants=set([Variant.function]),
structured=False,
structured_delegate=None,
structured_inherits=None,
precomputed=None,
autogen=[],
ufunc_inner_loop={},
manual_kernel_registration=False,
manual_cpp_binding=False,
python_module=None,
category_override=None,
device_guard=False,
device_check=DeviceCheckType.NoCheck,
loc=f.loc,
cpp_no_default_args=set(),
is_abstract=f.is_abstract,
has_composite_implicit_autograd_kernel=False,
has_composite_explicit_autograd_kernel=gets_composite_kernel,
# Every generated NativeFunction gets a "generated" tag, so it's easy to tell
# which NativeFunction objects did not come directly from native_functions.yaml.
tags=set(["generated"]),
),
backend_metadata,
)
# This function is responsible for adding generated NativeFunctions which don't appear
# explicitly in the codegen.
# You can inspect the full list of NativeFunctions yourself with the torchgen package, by running
# torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml")
# (Maybe we should make a friendly API for this)
#
# Note: this function *mutates* its two inputs,
# adding the new NativeFunctions / BackendMetadata to them
def add_generated_native_functions(
rs: List[NativeFunction],
indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
) -> None:
# The main code for gnerating new NativeFunctions
# First we group of NaitveFunctions by schema kind,
# then we detect which ones are missing and generate them.
pre_grouped_native_functions = pre_group_native_functions(rs)
for k, d in pre_grouped_native_functions.items():
has_functional = SchemaKind.functional in d
has_inplace = SchemaKind.inplace in d
has_mutable = SchemaKind.mutable in d
has_out = SchemaKind.out in d
# We automatically generate a few native functions that don't exist in the yaml, for a few reasons:
# (1) If an operator has an inplace/out= variant but no functional variant, we can generate
# a simple functional variant that the functionalization pass can consume.
# (2) If an operator has an inplace and functional but no out= variant, we generate an out=
# variant, mostly so we can easily pair up functions into NativeFunctionsGroup,
# while maintaining the constraint that the out= variant is "required".
#
# For now, we don't bother generated NativeFunctions for existing operators
# that only have a functional variant.
if has_mutable or has_inplace or has_out:
# Don't bother generating functions trio's for native functions that bypass the dispatcher.
are_manual = all(f.manual_cpp_binding for f in d.values())
# Don't bother generating functional + out= variants for view operators
has_view_ops = (
has_inplace and "inplace_view" in d[SchemaKind.inplace].tags
) or any(f.is_view_op for f in d.values())
# Don't generate the other variants for CompositeImplicitAutograd operators.
# We could probably do this, but the main benefit of generating the function triplets
# is for transforms that need them, and transforms don't need to act directly
# on CompositeImplicitAutograd operators (since we let them decompose).
are_composite_implicit = all(
f.has_composite_implicit_autograd_kernel for f in d.values()
)
if are_manual or has_view_ops or are_composite_implicit:
continue
if has_out and len(d.values()) == 1:
# Note: [Out ops with functional variants that don't get grouped properly]
# In theory we could validly have an out= operator in native_functions.yaml
# that has no other variants.
# But today, all of the operators where that's the case actually do have
# functional variants, that we are just unable to pair up properly.
# I think banning this all together is probably safer
# (you can always add a functional variant yourself if you want to add a new out= operator).
#
# We should probably fix the existing cases; this check is to prevent us from adding more over time.
if (
str(d[SchemaKind.out].func.name)
not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY
):
raise AssertionError(
f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}"
)
continue
# Some inplace ops that have problematic schemas (that we should fix), which prevent us
# from generating out= and functional variants
if (
has_inplace
and str(d[SchemaKind.inplace].func.name)
in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY
):
continue
base_fn = (
d[SchemaKind.inplace]
if has_inplace
else d[SchemaKind.mutable]
if has_mutable
else d[SchemaKind.out]
)
# Note: [Mutable ops that cannot get an out variant]
# We can only generate an out= variant if either:
# - the original function has tensor-like returns (since we can convert them to out kwargs)
# - or it's inplace (since we can convert `self` to an out kwarg)
# There are only two functions that don't fit this criteria today though,
# and they both look like they should be fixed to be out= variants,
# so if feels safer to ban this schema all-together
gets_out_variant = not has_out and (
base_fn.func.kind() == SchemaKind.inplace
or any(r.type.is_tensor_like() for r in base_fn.func.returns)
)
if not has_out and not gets_out_variant:
if (
str(base_fn.func.name)
not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
):
raise AssertionError(
f"""Found a mutable operator that we could not generate an out= variant for: {str(base_fn.func)}.
These operators are problematic, because we can't easily auto-generate functionalization code for them. If you really need
the operator have the schema mentioned, that add the name of the operator to the allow-list. Otherwise if possible,
please convert it to an inplace operator"""
)
# Generate an out= variant
if gets_out_variant:
fn, metadata = generate_function(base_fn, SchemaKind.out)
d[SchemaKind.out] = fn
BackendIndex.grow_index(indices, metadata)
rs.append(fn)
# Generate a functional variant, but only do it if the operator got an out= variant
# (Functional variants are only useful if we can group up the variants,
# which we can only do if they have an out= variant)
if not has_functional and (has_out or gets_out_variant):
fn, metadata = generate_function(base_fn, SchemaKind.functional)
d[SchemaKind.functional] = fn
BackendIndex.grow_index(indices, metadata)
rs.append(fn)