| # Owner(s): ["oncall: distributed"] |
| |
| import os |
| import sys |
| import tempfile |
| |
| import torch |
| import torch.distributed as c10d |
| import torch.multiprocessing as mp |
| from torch.testing._internal.common_distributed import \ |
| MultiProcessTestCase |
| from torch.testing._internal.common_utils import load_tests,\ |
| NO_MULTIPROCESSING_SPAWN |
| |
| # Torch distributed.nn is not available in windows |
| # check #42095, it errors on import. |
| _torch_dist_nn_available = True |
| try: |
| import torch.distributed.nn |
| except ImportError: |
| _torch_dist_nn_available = False |
| |
| # load_tests from common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| if not c10d.is_available(): |
| print('c10d not available, skipping tests', file=sys.stderr) |
| sys.exit(0) |
| |
| if NO_MULTIPROCESSING_SPAWN: |
| print('spawn not available, skipping tests', file=sys.stderr) |
| sys.exit(0) |
| |
| |
| class AbstractProcessGroupShareTensorTest(object): |
| world_size = 2 |
| |
| def _test_multiprocess(self, f, shared_tensors, init_pg, n_output): |
| ws = self.world_size |
| # file store will delete the test file on destruction |
| file = tempfile.NamedTemporaryFile(delete=False) |
| ctx = mp.get_context('spawn') |
| c2p = ctx.Queue(2) |
| p2c = ctx.Queue(2) |
| ps = [] |
| for i in range(ws): |
| p = ctx.Process( |
| target=f, |
| args=(i, file.name, shared_tensors, ws, init_pg, c2p, p2c)) |
| |
| p.start() |
| ps.append(p) |
| |
| for _ in range(ws * n_output): |
| pid, expected, result = c2p.get() |
| self.assertEqual( |
| expected, |
| result, |
| msg=( |
| "Expect rank {} to receive tensor {} but got {}." |
| ).format(pid, expected, result) |
| ) |
| |
| for _ in range(ws): |
| p2c.put(0) |
| |
| for p in ps: |
| p.join(2) |
| |
| # Why classmethod? multiprocessing cannot pickle TestCase subclass when in |
| # spawn mode. See https://bugs.python.org/issue33884. |
| @classmethod |
| def _test_broadcast_process( |
| cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c): |
| pg = init_pg(rank, filename, world_size) |
| xs = [shared_tensors[rank]] |
| pg.broadcast(xs).wait() |
| c2p.put((rank, torch.zeros(2, 2), xs[0].to("cpu"))) |
| p2c.get() |
| |
| @classmethod |
| def _test_allreduce_process( |
| cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c): |
| pg = init_pg(rank, filename, world_size) |
| xs = [shared_tensors[rank]] |
| pg.allreduce(xs, op=c10d.ReduceOp.SUM).wait() |
| c2p.put((rank, torch.ones(2, 2) * 2, xs[0].to("cpu"))) |
| p2c.get() |
| |
| @classmethod |
| def _test_allgather_process( |
| cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c): |
| pg = init_pg(rank, filename, world_size) |
| xs = [shared_tensors[rank]] |
| ys = [[torch.zeros_like(xs[0]) for i in range(world_size)]] |
| pg.allgather(ys, xs).wait() |
| for i in range(world_size): |
| c2p.put((rank, torch.ones(2, 2) * i, ys[0][i].to("cpu"))) |
| |
| p2c.get() |
| |
| |
| class TestDistributedNNFunctions(MultiProcessTestCase): |
| def setUp(self): |
| super(TestDistributedNNFunctions, self).setUp() |
| self._spawn_processes() |
| |
| def tearDown(self): |
| super(TestDistributedNNFunctions, self).tearDown() |
| try: |
| os.remove(self.file_name) |
| except OSError: |
| pass |
| |
| @property |
| def op_timeout_sec(self): |
| return 1 |
| |
| @property |
| def world_size(self): |
| return 2 |
| |
| def _test_broadcast(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| x = torch.ones(5, 5, device=device) + self.rank |
| x.requires_grad = True |
| y = torch.distributed.nn.broadcast(x, 1) |
| self.assertEqual(y, 1 + torch.ones(5, 5)) |
| z = y.sin().sum() |
| z.backward() |
| # We can't check the gradient of communications numerically so we have to do some calculations |
| if self.rank == 1: |
| self.assertEqual(x.grad, 2 * torch.cos(x)) |
| elif self.rank == 0: |
| self.assertEqual(x.grad, torch.zeros(5, 5, device=device)) |
| |
| def _test_reduce(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| x = torch.ones(5, 5, device=device) + self.rank |
| x.requires_grad = True |
| y = torch.distributed.nn.reduce(x, 1, op=c10d.ReduceOp.SUM) |
| |
| if self.rank == 1: |
| self.assertEqual(y, 3 * torch.ones(5, 5, device=device)) |
| |
| z = y.sin().sum() |
| z.backward() |
| # Gradients are broadcasted to both ranks |
| x_g = (3 * torch.ones(5, 5, device=device)).cos() |
| self.assertEqual(x.grad, x_g) |
| |
| def _test_allreduce(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| x = torch.ones(5, 5, device=device) + self.rank |
| x.requires_grad = True |
| y = torch.distributed.nn.all_reduce(x, op=c10d.ReduceOp.SUM) |
| |
| self.assertEqual(y, 3 * torch.ones(5, 5, device=device)) |
| |
| z = y.sin().sum() |
| z.backward() |
| x_g = 2 * (3 * torch.ones(5, 5, device=device)).cos() |
| self.assertEqual(x.grad, x_g) |
| |
| def _test_all_gather(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| x = torch.ones(5, 5, device=device) + self.rank |
| x.requires_grad = True |
| tensors = torch.distributed.nn.all_gather(x) |
| for i, t in enumerate(tensors): |
| self.assertEqual(t, torch.ones(5, 5, device=device) + i) |
| y = torch.sum(torch.stack(tensors), axis=0) |
| z = y.sin().sum() |
| z.backward() |
| |
| x_s = 2 * (3 * torch.ones(5, 5, device=device)).cos() |
| self.assertEqual(x.grad, x_s) |
| |
| def _test_all_to_all(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| x0 = torch.ones(5, 5, device=device) + 2 * self.rank |
| x1 = torch.ones(5, 5, device=device) + 2 * self.rank |
| x0.requires_grad = True |
| x1.requires_grad = True |
| y0 = torch.empty_like(x0) |
| y1 = torch.empty_like(x1) |
| tensors = torch.distributed.nn.all_to_all([y0, y1], [x0, x1]) |
| for i, t in enumerate(tensors): |
| self.assertEqual(t, torch.ones(5, 5, device=device) + 2 * i) |
| y = torch.sum(torch.stack(tensors), axis=0) |
| z = y.sin().sum() |
| z.backward() |
| x_s = (4 * torch.ones(5, 5, device=device)).cos() |
| self.assertEqual(x0.grad, x_s) |
| self.assertEqual(x1.grad, x_s) |
| |
| def _test_all_to_all_single(self, backend): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| # This is required because these functions calls directly to the .dist and needs |
| # the world to be initialized |
| c10d.init_process_group( |
| store=store, rank=self.rank, world_size=self.world_size, backend=backend |
| ) |
| device = torch.device(f"cuda:{self.rank}") |
| row = self.world_size * (self.rank + 1) * (self.world_size + 1) / 2 |
| x = torch.ones(int(row), 5, device=device) * (self.rank + 1) |
| x.requires_grad = True |
| y = torch.empty_like(x) |
| split_sizes = [(i + 1) * (self.rank + 1) for i in range(self.world_size)] |
| y = torch.distributed.nn.all_to_all_single( |
| y, x, output_split_sizes=split_sizes, input_split_sizes=split_sizes |
| ) |
| expected = [] |
| for idx, tensor in enumerate(torch.split(x, split_sizes)): |
| expected.append(torch.full_like(tensor, (idx + 1))) |
| expected = torch.cat(expected) |
| self.assertEqual(y, expected) |
| z = y.sin().sum() |
| z.backward() |
| x_s = ((self.rank + 1) * torch.ones(int(row), 5, device=device)).cos() |
| self.assertEqual(x.grad, x_s) |