| # Owner(s): ["oncall: jit"] |
| |
| from torch.testing._internal.jit_utils import JitTestCase |
| from torch._C import parse_ir |
| import torch |
| |
| |
| if __name__ == '__main__': |
| raise RuntimeError("This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_jit.py TESTNAME\n\n" |
| "instead.") |
| |
| class TestAliasAnalysis(JitTestCase): |
| def test_becomes_wildcard_annotations(self): |
| graph_str = """ |
| graph(%a.1 : Tensor, %b.1 : Tensor): |
| %11 : NoneType = prim::Constant() |
| %8 : int = prim::Constant[value=0]() |
| %7 : int = prim::Constant[value=1]() |
| %x.1 : Tensor = aten::add(%a.1, %b.1, %7) |
| %y.1 : Tensor[] = aten::split(%x.1, %7, %8) |
| return () |
| """ |
| graph = parse_ir(graph_str) |
| alias_db = graph.alias_db() |
| split_node = graph.findNode("aten::split") |
| # split input enters wildcard set, list initalized as containing wildcard set |
| self.assertTrue(alias_db.may_contain_alias(next(split_node.inputs()), split_node.output())) |
| # because %x.1 enters wildcard set, it now aliases other members of wildcard set (graph inputs) |
| self.assertTrue(alias_db.may_contain_alias(next(split_node.inputs()), next(graph.inputs()))) |
| |
| def test_nested_list_construct_not_wildcard(self): |
| @torch.jit.script |
| def foo(x): |
| y = torch.rand([2, 2]) |
| return [y] |
| |
| graph = foo.graph |
| graph.alias_db() |
| alias_db = graph.alias_db() |
| ten_construct = graph.findNode("aten::rand").output() |
| output = next(graph.outputs()) |
| self.assertTrue(alias_db.may_contain_alias(ten_construct, output)) |
| self.assertFalse(alias_db.may_contain_alias(next(graph.inputs()), ten_construct)) |
| |
| def test_recursive_calls(self): |
| @torch.jit.script |
| def foo(x, y): |
| x.add_(1) |
| return x + y |
| |
| @torch.jit.script |
| def caller(): |
| a = torch.rand([2, 2]) |
| b = torch.ones([2, 2]) |
| out1 = foo(a, b) |
| c = torch.rand([1]) |
| d = torch.ones([2]) |
| out2 = foo(d, c) |
| return out1, out2 |
| |
| isFrozen = False |
| descend_function_calls = True |
| alias_db = caller.graph.alias_db(isFrozen, descend_function_calls) |
| func_calls = caller.graph.findAllNodes("prim::CallFunction") |
| self.assertEqual(len(func_calls), 2) |
| for node in func_calls: |
| inps = list(node.inputs()) |
| self.assertTrue(alias_db.has_writers(inps[1])) |
| self.assertFalse(alias_db.has_writers(inps[2])) |
| |
| class Mod(torch.nn.Module): |
| def forward(self): |
| a = torch.rand([2, 2]) |
| b = torch.ones([2, 2]) |
| out1 = self.foo2(a, b) |
| c = torch.rand([1]) |
| d = torch.ones([2]) |
| out2 = self.foo2(d, c) |
| return out1, out2 |
| |
| def foo2(self, x, y): |
| x.add_(1) |
| return x + y |
| |
| mod = torch.jit.script(Mod()) |
| alias_db = mod.graph.alias_db(isFrozen, descend_function_calls) |
| func_calls = mod.graph.findAllNodes("prim::CallMethod") |
| self.assertEqual(len(func_calls), 2) |
| for node in func_calls: |
| inps = list(node.inputs()) |
| self.assertTrue(alias_db.has_writers(inps[1])) |
| self.assertFalse(alias_db.has_writers(inps[2])) |