| # Owner(s): ["oncall: jit"] |
| |
| import os |
| import sys |
| import unittest |
| from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \ |
| num_profiled_runs, enable_profiling_mode_for_profiling_tests |
| from torch.testing._internal.common_jit import check_against_reference |
| import torch |
| |
| # Make the helper files in test/ importable |
| pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
| sys.path.append(pytorch_test_dir) |
| from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining |
| from torch.testing import FileCheck |
| |
| from typing import List, Tuple, Optional |
| |
| if __name__ == '__main__': |
| raise RuntimeError("This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_jit.py TESTNAME\n\n" |
| "instead.") |
| |
| |
| @unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.SIMPLE, "Simple Executor doesn't support gradients") |
| class TestAutodiffSubgraphSlicing(JitTestCase): |
| # TODO: It is better if we can test directly on graphs instead of the current |
| # end-to-end fashion. |
| def _perform_ad_subgraph_slicing(self, fn, *input_sizes): |
| with disable_autodiff_subgraph_inlining(): |
| with enable_profiling_mode_for_profiling_tests(): |
| ge = torch.jit.script(fn) |
| inputs = [torch.randn(size, requires_grad=True) for size in input_sizes] |
| ge(*inputs, profile_and_replay=True) |
| return ge.graph_for(*inputs) |
| |
| def assertGraphSize(self, graph, size): |
| nodes = list(filter(lambda n: (n.kind() != "prim::BailOut" and |
| n.kind() != "prim::BailoutTemplate" and |
| n.kind() != "prim::TypeCheck" and |
| n.kind() != "prim::RequiresGradCheck"), |
| graph.nodes())) |
| self.assertEqual(len(list(nodes)), size) |
| |
| def test_chunk_constant_script_ad(self): |
| @torch.jit.script |
| def func(x): |
| x1, x2 = torch.chunk(x, 2) |
| return (x1, x2) |
| |
| input = torch.rand(6, 10).requires_grad_() |
| with disable_autodiff_subgraph_inlining(): |
| with enable_profiling_mode_for_profiling_tests(): |
| output = func(input, profile_and_replay=True) |
| FileCheck().check_not("prim::DifferentiableGraph").run(func.graph_for(input)) |
| |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "This threshold is only valid for Profiling Executor") |
| def test_diff_graph_inline_threshold(self): |
| with enable_profiling_mode_for_profiling_tests(): |
| NUM_RUNS = 1 |
| with num_profiled_runs(NUM_RUNS): |
| @torch.jit.script |
| def foo(x): |
| |
| # two nodes should be fused |
| # see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/runtime/graph_executor_impl.h#L49 |
| return torch.sigmoid(torch.sigmoid(x)) |
| |
| @torch.jit.script |
| def bar(x): |
| # two nodes should NOT be fused |
| return torch.sigmoid(x) |
| |
| input = torch.rand([4, 4], requires_grad=True) |
| foo(input) |
| foo(input) |
| |
| bar(input) |
| bar(input) |
| |
| self.assertGraphContainsExactly(foo.graph_for(input), 'prim::DifferentiableGraph', 1) |
| self.assertGraphContainsExactly(bar.graph_for(input), 'prim::DifferentiableGraph', 0) |
| |
| def test_bias_as_module_attr(self): |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| class M(torch.nn.Module): |
| def __init__(self, has_bias): |
| super(M, self).__init__() |
| self.ll = torch.nn.Linear(10, 10, has_bias) |
| |
| def forward(self, x, y): |
| return self.ll(x + y) * x + y |
| |
| x = torch.rand(10, 10, requires_grad=True) |
| no_bias = M(False) |
| scripted_no_bias = torch.jit.script(no_bias) |
| scripted_no_bias(x, x) |
| scripted_no_bias(x, x) |
| scripted_no_bias(x, x) |
| has_bias = M(True) |
| check_against_reference(self, scripted_no_bias, no_bias, lambda x: x, (x, x,), check_types=False) |
| scripted_has_bias = torch.jit.script(has_bias) |
| scripted_has_bias(x, x) |
| scripted_has_bias(x, x) |
| scripted_has_bias(x, x) |
| check_against_reference(self, scripted_has_bias, has_bias, lambda x: x, (x, x,), check_types=False) |
| |
| def test_constructed_bias(self): |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| def method1(x, weight, b1, b2): |
| bias = b1 * b2 |
| return torch.nn.functional.linear(x, weight, bias) |
| N = 10 |
| x = torch.rand(N, N, requires_grad=True) |
| weight = torch.rand(N, N, requires_grad=True) |
| b1 = torch.rand(N, N, requires_grad=True) |
| b2 = torch.rand(N, N, requires_grad=True) |
| scripted = self.checkScript(method1, (x, weight, b1, b2)) |
| # check_types requires last_graph on scripted to be set, so we just skip it |
| check_against_reference(self, scripted, method1, lambda x: x, (x, weight, b1, b2), check_types=False) |
| |
| def test_bias_as_arg(self): |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| def method1(x, weight, bias: Optional[torch.Tensor]): |
| return torch.nn.functional.linear(x, weight, bias).relu() + 2 |
| N = 10 |
| x = torch.rand(N, N, requires_grad=True) |
| weight = torch.rand(N, N, requires_grad=True) |
| bias = None |
| scripted = self.checkScript(method1, (x, weight, bias)) |
| # check_types requires last_graph on scripted to be set, so we just skip it |
| check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False) |
| bias = torch.rand(N, N, requires_grad=True) |
| scripted = self.checkScript(method1, (x, weight, bias)) |
| # check_types requires last_graph on scripted to be set, so we just skip it |
| check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False) |
| |
| def test_requires_grad_for_tensor_list(self): |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| |
| # output & var_list[0] should have requires_grad set to True |
| def func(input0: torch.Tensor, input1: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
| var_list = [input0, input1] |
| var = torch.cat(var_list) |
| output = var + 1.0 |
| return output, var_list |
| jit_f = torch.jit.script(func) |
| input0 = torch.randn((2,), requires_grad=True) |
| input1 = torch.randn((2,)) |
| output_ref = func(input0, input1) |
| for i in range(2): |
| output = jit_f(input0, input1) |
| assert(output_ref[0].requires_grad == output[0].requires_grad) |
| assert(output_ref[1][0].requires_grad == output[1][0].requires_grad) |
| assert(output_ref[1][1].requires_grad == output[1][1].requires_grad) |
| |
| @unittest.skip("disable until we property handle tensor lists with undefined gradients") |
| def test_differentiable_graph_ops_requires_grad(self): |
| x = torch.randn(8, 2, dtype=torch.float).requires_grad_() |
| y = torch.randn(8, 2, dtype=torch.float) |
| |
| def t(x : torch.Tensor, y : torch.Tensor, flag : bool): |
| o = x + 1.0 |
| o1 = torch.relu(o) |
| o = y + 1.5 |
| o2 = torch.relu(o) |
| o3 = o1 + o2 |
| |
| if flag: |
| o = o1 + 1.0 |
| oo1 = torch.relu(o) |
| o = o2 + 2.5 |
| oo2 = torch.relu(o) |
| oo3 = oo1 + oo2 |
| else: |
| o = o1 * 1.0 |
| oo1 = torch.relu(o) |
| o = o2 * 2.0 |
| oo2 = torch.relu(o) |
| oo3 = oo1 + oo2 |
| |
| return o1, o2, o3, oo1, oo2, oo3 |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, False) |
| jit_o = t_jit(x, y, False) |
| o = t(x, y, False) |
| |
| FileCheck().check("prim::DifferentiableGraph").run(t_jit.graph_for(x, y, False)) |
| # validate the differentiableGraphOps are marking proper requires_grad |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.requires_grad, jit_oo.requires_grad) |
| self.assertEqual(oo, jit_oo) |
| # one more runs to trigger fusion |
| jit_o = t_jit(x, y, False) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo.requires_grad, jit_oo.requires_grad) |
| self.assertEqual(oo, jit_oo) |
| |
| @unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.PROFILING, "Simple Executor doesn't support gradients") |
| def test_prune_grad(self): |
| @torch.jit.script |
| def t(input, bias): |
| return torch.nn.functional.relu(input + bias) |
| input = torch.randn(2, 8, requires_grad=True) |
| bias = torch.randn(8, requires_grad=False) # bias does NOT require grad |
| NUM_PROFILED_RUNS = 1 |
| with num_profiled_runs(NUM_PROFILED_RUNS): |
| WARMUP = 3 # 2 runs to reach backward + 1 to optimize it |
| for x in range(WARMUP): |
| o = t(input, bias) |
| o.sum().backward() |
| |
| fwd_plan = list(t.get_debug_state().execution_plans.values())[0] |
| bwd_graph = list(fwd_plan.code.grad_executor_states()[0].execution_plans.values())[0].graph |
| tup = next(bwd_graph.outputs()) |
| self.assertEqual(len(list(tup.node().inputs())), 1) |
| |
| def test_simple_merge(self): |
| # o --> o |
| def fn(x, y, z): |
| a = x * y |
| b = a * z |
| return b |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1) |
| |
| self.assertGraphSize(graph, 1) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_simple_no_merge(self): |
| # o: autodiff supported. x: not autodiff supported. |
| # o --> x |
| def fn(x, y, z): |
| a = x * y |
| b = torch.zeros([abs(int(y))]) |
| return a, b |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1) |
| g_str = str(graph) |
| FileCheck().check("aten::Int").check("aten::zeros").check_not("aten::mul").run(g_str[0:g_str.find("return")]) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_does_not_merge_unrelated(self): |
| # o o |
| def fn(w, x, y, z): |
| a = x * y |
| b = w * z |
| return a, b |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1) |
| |
| self.assertGraphSize(graph, 3) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2) |
| |
| def test_merges_without_cycles(self): |
| # o --> o --> o |
| # | ^ |
| # \_________/ |
| def fn(w, x, y): |
| a = w * x |
| b = a * y |
| c = a * b |
| return c |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1) |
| |
| self.assertGraphSize(graph, 1) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_merges_dense(self): |
| # o o |
| # |\ /| |
| # | \ / | |
| # | /\ | |
| # vv vv |
| # o o |
| def fn(x, y): |
| a, b = x.chunk(2) |
| c, d = y.chunk(2) |
| return a + c, b + d |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 2, 2) |
| |
| self.assertGraphSize(graph, 2) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_does_not_create_cycles(self): |
| # o --> x --> o |
| # | ^ |
| # \_________/ |
| def fn(w, x, y): |
| a = w * x |
| b = torch.zeros(abs(int(a))) |
| c = a * b |
| return c |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2) |
| |
| def test_merges_up(self): |
| # o --> x o |
| # | ^ |
| # \_________/ |
| def fn(w, x, y, z): |
| a = w * x |
| b = torch.zeros(abs(int(y))) |
| c = a * z |
| return b, c |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1) |
| g_str = str(graph) |
| FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")]) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_merges_down(self): |
| # o x --> o |
| # | ^ |
| # \_________/ |
| def fn(v, w, x, y): |
| a = v * w |
| b = torch.ones(int(y)) |
| c = b * a |
| return a, c |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1) |
| |
| num_nodes = 4 if GRAPH_EXECUTOR == ProfilingMode.PROFILING else 3 |
| # add moved down |
| g_str = str(graph) |
| FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")]) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1) |
| |
| def test_respects_lexical_scoping(self): |
| def fn(x, k): |
| y = x * 1.1 |
| if bool(k): |
| k = k + y |
| z = y * k |
| return z, k |
| |
| |
| graph = self._perform_ad_subgraph_slicing(fn, 1, 1) |
| # We should not have combined the two multiplications into |
| # the same group; they should each be a separate DiffGraph |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 3) |
| |
| |
| def test_merge_respects_aliasing(self): |
| def fn(x, k, cond): |
| y = x * 1.1 |
| y = y * k |
| y = y * 2.2 |
| if bool(cond): |
| z1 = y[0] |
| z2 = y[1] |
| z1.add_(3) |
| out = z2 + k + 3.3 |
| out = out * out |
| return out |
| |
| graph = self._perform_ad_subgraph_slicing(fn, [2, 2], [2, 2], 1) |
| # z2 did did not get merged into the subgraph |
| FileCheck().check("prim::If").check("aten::select").check_next("aten::select")\ |
| .check_next("aten::add_").check("Differentiable").run(graph) |
| self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2) |
| |
| def test_aliased_outputs(self): |
| |
| with enable_profiling_mode_for_profiling_tests(): |
| |
| |
| # Case 1: aliasing between relu and t |
| # is within a DifferentiableGraph. It should be valid |
| # to merge both split_with_sizes in relu in one graph |
| input_str = """ |
| graph(%a : Tensor): |
| %b : Tensor = aten::relu(%a) |
| %2 : Tensor = aten::t(%b) |
| return (%2) |
| """ |
| |
| graph = torch._C.parse_ir(input_str) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph, 1) |
| FileCheck().check("with prim::DifferentiableGraph") \ |
| .check("aten::relu").check("aten::t") \ |
| .run(graph) |
| |
| # Case 2: aliasing between relu and split_with_sizes |
| # are both outputs of a Diff graph. It should be invalid |
| # to merge both split_with_sizes in relu in one graph |
| # i.e. relu and split_with_sizes should be in different |
| # differentiable graphs |
| input_str = """ |
| graph(%a : Tensor): |
| %b : Tensor = aten::relu(%a) |
| %0 : int[] = prim::Constant[value=[2, 2, 1]]() |
| %1 : int = prim::Constant[value=0]() |
| %2 : Tensor[] = aten::split_with_sizes(%b, %0, %1) |
| %3 : (Tensor[], Tensor[]) = prim::TupleConstruct(%b, %2) |
| return (%3) |
| """ |
| |
| graph = torch._C.parse_ir(input_str) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph, 1) |
| FileCheck().check("Tensor = prim::DifferentiableGraph") \ |
| .check("with prim::DifferentiableGraph") \ |
| .check("Tensor = aten::relu") \ |
| .check_not("aten::split_with_sizes") \ |
| .run(graph) |
| |
| # Case 3: two aliased nodes in a graph. |
| # Both `split_with_sizes` should be unfused |
| input_str = """ |
| graph(%a : Tensor): |
| %b : Tensor = aten::relu(%a) |
| %s1 : int[] = prim::Constant[value=[2, 2, 1]]() |
| %s2 : int[] = prim::Constant[value=[3, 1]]() |
| %1 : int = prim::Constant[value=0]() |
| %2 : Tensor[] = aten::split_with_sizes(%b, %s1, %1) |
| %3 : Tensor[] = aten::split_with_sizes(%b, %s2, %1) |
| %4 : (Tensor, Tensor[]) = prim::TupleConstruct(%b, %2, %3) |
| return (%4) |
| """ |
| |
| graph = torch._C.parse_ir(input_str) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph, 1) |
| FileCheck().check("Tensor = prim::DifferentiableGraph") \ |
| .check("with prim::DifferentiableGraph") \ |
| .check("Tensor = aten::relu") \ |
| .check_not("aten::split_with_sizes") \ |
| .run(graph) |
| |
| # Case 4: the aliased output has a descendant |
| # Both should be unfused. Note, %3 comes before %2 |
| # to test that we unfuse in the reverse topo order |
| input_str = """ |
| graph(%a : Tensor): |
| %b : Tensor = aten::relu(%a) |
| %0 : int[] = prim::Constant[value=[2, 2, 1]]() |
| %1 : int = prim::Constant[value=0]() |
| %2 : Tensor = aten::t(%b) |
| %3 : Tensor = aten::relu(%2) |
| %4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%b, %3, %2) |
| return (%4) |
| """ |
| |
| graph = torch._C.parse_ir(input_str) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph, 1) |
| FileCheck().check("Tensor = prim::DifferentiableGraph") \ |
| .check("with prim::DifferentiableGraph") \ |
| .check("Tensor = aten::relu") \ |
| .check_not("aten::t") \ |
| .run(graph) |
| |
| # Case 5: multiple aliased groups |
| # Both should be unfused. Note, %3 comes before %2 |
| # to test that we unfuse in the reverse topo order |
| input_str = """ |
| graph(%a : Tensor): |
| %b : Tensor = aten::relu(%a) |
| %c : Tensor = aten::abs(%a) |
| %0 : int[] = prim::Constant[value=[2, 2, 1]]() |
| %1 : int = prim::Constant[value=0]() |
| %d : Tensor = aten::t(%c) |
| %2 : Tensor = aten::t(%b) |
| %3 : Tensor = aten::relu(%2) |
| %4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%3, %2, %d, %b, %c, %b) |
| return (%4) |
| """ |
| |
| graph = torch._C.parse_ir(input_str) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph, 1) |
| FileCheck().check("Tensor = prim::DifferentiableGraph") \ |
| .check("with prim::DifferentiableGraph") \ |
| .check("Tensor = aten::relu") \ |
| .check_not("aten::t") \ |
| .run(graph) |
| |
| def test_has_profiled_info_aliasing_outputs(self): |
| # The expectation is that CallFunction will prevent the final profile node from |
| # getting merged into the DifferentiableGraph, and that create_autodiff_subgraphs |
| # will instead add this to the type for %4. |
| ir = """ |
| graph(%a : Tensor): |
| %1 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%a) |
| %2 : Tensor = aten::relu(%1) |
| %3 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%2) |
| %4 : Tensor = aten::relu(%3) |
| %5 : Tensor = prim::CallFunction(%4) |
| %6 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%4) |
| return (%6) |
| """ |
| |
| graph = torch._C.parse_ir(ir) |
| torch._C._jit_pass_create_autodiff_subgraphs(graph) |
| |
| for n in graph.nodes(): |
| if n.kind() == "prim::DifferentiableGraph": |
| diff_graph = n.g("Subgraph") |
| |
| outputs = list(diff_graph.outputs()) |
| self.assertEqual(1, len(outputs)) |
| output = outputs[0] |
| self.assertEqual(False, output.requiresGrad()) |
| |
| FileCheck().check("= prim::DifferentiableGraph") \ |
| .check("with prim::DifferentiableGraph") \ |
| .check(" = aten::relu") \ |
| .check("requires_grad=0") \ |
| .check("aten::relu") \ |
| .run(graph) |