blob: f643061703cebd39ed647812d0c695e7ecd83625 [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \
num_profiled_runs, enable_profiling_mode_for_profiling_tests
from torch.testing._internal.common_jit import check_against_reference
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining
from torch.testing import FileCheck
from typing import List, Tuple, Optional
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.SIMPLE, "Simple Executor doesn't support gradients")
class TestAutodiffSubgraphSlicing(JitTestCase):
# TODO: It is better if we can test directly on graphs instead of the current
# end-to-end fashion.
def _perform_ad_subgraph_slicing(self, fn, *input_sizes):
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
ge = torch.jit.script(fn)
inputs = [torch.randn(size, requires_grad=True) for size in input_sizes]
ge(*inputs, profile_and_replay=True)
return ge.graph_for(*inputs)
def assertGraphSize(self, graph, size):
nodes = list(filter(lambda n: (n.kind() != "prim::BailOut" and
n.kind() != "prim::BailoutTemplate" and
n.kind() != "prim::TypeCheck" and
n.kind() != "prim::RequiresGradCheck"),
graph.nodes()))
self.assertEqual(len(list(nodes)), size)
def test_chunk_constant_script_ad(self):
@torch.jit.script
def func(x):
x1, x2 = torch.chunk(x, 2)
return (x1, x2)
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
FileCheck().check_not("prim::DifferentiableGraph").run(func.graph_for(input))
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "This threshold is only valid for Profiling Executor")
def test_diff_graph_inline_threshold(self):
with enable_profiling_mode_for_profiling_tests():
NUM_RUNS = 1
with num_profiled_runs(NUM_RUNS):
@torch.jit.script
def foo(x):
# two nodes should be fused
# see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/runtime/graph_executor_impl.h#L49
return torch.sigmoid(torch.sigmoid(x))
@torch.jit.script
def bar(x):
# two nodes should NOT be fused
return torch.sigmoid(x)
input = torch.rand([4, 4], requires_grad=True)
foo(input)
foo(input)
bar(input)
bar(input)
self.assertGraphContainsExactly(foo.graph_for(input), 'prim::DifferentiableGraph', 1)
self.assertGraphContainsExactly(bar.graph_for(input), 'prim::DifferentiableGraph', 0)
def test_bias_as_module_attr(self):
with enable_profiling_mode_for_profiling_tests():
class M(torch.nn.Module):
def __init__(self, has_bias):
super(M, self).__init__()
self.ll = torch.nn.Linear(10, 10, has_bias)
def forward(self, x, y):
return self.ll(x + y) * x + y
x = torch.rand(10, 10, requires_grad=True)
no_bias = M(False)
scripted_no_bias = torch.jit.script(no_bias)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
has_bias = M(True)
check_against_reference(self, scripted_no_bias, no_bias, lambda x: x, (x, x,), check_types=False)
scripted_has_bias = torch.jit.script(has_bias)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
check_against_reference(self, scripted_has_bias, has_bias, lambda x: x, (x, x,), check_types=False)
def test_constructed_bias(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, b1, b2):
bias = b1 * b2
return torch.nn.functional.linear(x, weight, bias)
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
b1 = torch.rand(N, N, requires_grad=True)
b2 = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, b1, b2))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, b1, b2), check_types=False)
def test_bias_as_arg(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, bias: Optional[torch.Tensor]):
return torch.nn.functional.linear(x, weight, bias).relu() + 2
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
bias = None
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False)
bias = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False)
def test_requires_grad_for_tensor_list(self):
with enable_profiling_mode_for_profiling_tests():
# output & var_list[0] should have requires_grad set to True
def func(input0: torch.Tensor, input1: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
var_list = [input0, input1]
var = torch.cat(var_list)
output = var + 1.0
return output, var_list
jit_f = torch.jit.script(func)
input0 = torch.randn((2,), requires_grad=True)
input1 = torch.randn((2,))
output_ref = func(input0, input1)
for i in range(2):
output = jit_f(input0, input1)
assert(output_ref[0].requires_grad == output[0].requires_grad)
assert(output_ref[1][0].requires_grad == output[1][0].requires_grad)
assert(output_ref[1][1].requires_grad == output[1][1].requires_grad)
@unittest.skip("disable until we property handle tensor lists with undefined gradients")
def test_differentiable_graph_ops_requires_grad(self):
x = torch.randn(8, 2, dtype=torch.float).requires_grad_()
y = torch.randn(8, 2, dtype=torch.float)
def t(x : torch.Tensor, y : torch.Tensor, flag : bool):
o = x + 1.0
o1 = torch.relu(o)
o = y + 1.5
o2 = torch.relu(o)
o3 = o1 + o2
if flag:
o = o1 + 1.0
oo1 = torch.relu(o)
o = o2 + 2.5
oo2 = torch.relu(o)
oo3 = oo1 + oo2
else:
o = o1 * 1.0
oo1 = torch.relu(o)
o = o2 * 2.0
oo2 = torch.relu(o)
oo3 = oo1 + oo2
return o1, o2, o3, oo1, oo2, oo3
with enable_profiling_mode_for_profiling_tests():
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y, False)
jit_o = t_jit(x, y, False)
o = t(x, y, False)
FileCheck().check("prim::DifferentiableGraph").run(t_jit.graph_for(x, y, False))
# validate the differentiableGraphOps are marking proper requires_grad
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
# one more runs to trigger fusion
jit_o = t_jit(x, y, False)
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.dtype, jit_oo.dtype)
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.PROFILING, "Simple Executor doesn't support gradients")
def test_prune_grad(self):
@torch.jit.script
def t(input, bias):
return torch.nn.functional.relu(input + bias)
input = torch.randn(2, 8, requires_grad=True)
bias = torch.randn(8, requires_grad=False) # bias does NOT require grad
NUM_PROFILED_RUNS = 1
with num_profiled_runs(NUM_PROFILED_RUNS):
WARMUP = 3 # 2 runs to reach backward + 1 to optimize it
for x in range(WARMUP):
o = t(input, bias)
o.sum().backward()
fwd_plan = list(t.get_debug_state().execution_plans.values())[0]
bwd_graph = list(fwd_plan.code.grad_executor_states()[0].execution_plans.values())[0].graph
tup = next(bwd_graph.outputs())
self.assertEqual(len(list(tup.node().inputs())), 1)
def test_simple_merge(self):
# o --> o
def fn(x, y, z):
a = x * y
b = a * z
return b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_simple_no_merge(self):
# o: autodiff supported. x: not autodiff supported.
# o --> x
def fn(x, y, z):
a = x * y
b = torch.zeros([abs(int(y))])
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
g_str = str(graph)
FileCheck().check("aten::Int").check("aten::zeros").check_not("aten::mul").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_does_not_merge_unrelated(self):
# o o
def fn(w, x, y, z):
a = x * y
b = w * z
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
self.assertGraphSize(graph, 3)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_merges_without_cycles(self):
# o --> o --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = a * y
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_merges_dense(self):
# o o
# |\ /|
# | \ / |
# | /\ |
# vv vv
# o o
def fn(x, y):
a, b = x.chunk(2)
c, d = y.chunk(2)
return a + c, b + d
graph = self._perform_ad_subgraph_slicing(fn, 2, 2)
self.assertGraphSize(graph, 2)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_does_not_create_cycles(self):
# o --> x --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = torch.zeros(abs(int(a)))
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_merges_up(self):
# o --> x o
# | ^
# \_________/
def fn(w, x, y, z):
a = w * x
b = torch.zeros(abs(int(y)))
c = a * z
return b, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_merges_down(self):
# o x --> o
# | ^
# \_________/
def fn(v, w, x, y):
a = v * w
b = torch.ones(int(y))
c = b * a
return a, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
num_nodes = 4 if GRAPH_EXECUTOR == ProfilingMode.PROFILING else 3
# add moved down
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_respects_lexical_scoping(self):
def fn(x, k):
y = x * 1.1
if bool(k):
k = k + y
z = y * k
return z, k
graph = self._perform_ad_subgraph_slicing(fn, 1, 1)
# We should not have combined the two multiplications into
# the same group; they should each be a separate DiffGraph
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 3)
def test_merge_respects_aliasing(self):
def fn(x, k, cond):
y = x * 1.1
y = y * k
y = y * 2.2
if bool(cond):
z1 = y[0]
z2 = y[1]
z1.add_(3)
out = z2 + k + 3.3
out = out * out
return out
graph = self._perform_ad_subgraph_slicing(fn, [2, 2], [2, 2], 1)
# z2 did did not get merged into the subgraph
FileCheck().check("prim::If").check("aten::select").check_next("aten::select")\
.check_next("aten::add_").check("Differentiable").run(graph)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_aliased_outputs(self):
with enable_profiling_mode_for_profiling_tests():
# Case 1: aliasing between relu and t
# is within a DifferentiableGraph. It should be valid
# to merge both split_with_sizes in relu in one graph
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%2 : Tensor = aten::t(%b)
return (%2)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("with prim::DifferentiableGraph") \
.check("aten::relu").check("aten::t") \
.run(graph)
# Case 2: aliasing between relu and split_with_sizes
# are both outputs of a Diff graph. It should be invalid
# to merge both split_with_sizes in relu in one graph
# i.e. relu and split_with_sizes should be in different
# differentiable graphs
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %0, %1)
%3 : (Tensor[], Tensor[]) = prim::TupleConstruct(%b, %2)
return (%3)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::split_with_sizes") \
.run(graph)
# Case 3: two aliased nodes in a graph.
# Both `split_with_sizes` should be unfused
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%s1 : int[] = prim::Constant[value=[2, 2, 1]]()
%s2 : int[] = prim::Constant[value=[3, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %s1, %1)
%3 : Tensor[] = aten::split_with_sizes(%b, %s2, %1)
%4 : (Tensor, Tensor[]) = prim::TupleConstruct(%b, %2, %3)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::split_with_sizes") \
.run(graph)
# Case 4: the aliased output has a descendant
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%b, %3, %2)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::t") \
.run(graph)
# Case 5: multiple aliased groups
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%c : Tensor = aten::abs(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%d : Tensor = aten::t(%c)
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%3, %2, %d, %b, %c, %b)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::t") \
.run(graph)
def test_has_profiled_info_aliasing_outputs(self):
# The expectation is that CallFunction will prevent the final profile node from
# getting merged into the DifferentiableGraph, and that create_autodiff_subgraphs
# will instead add this to the type for %4.
ir = """
graph(%a : Tensor):
%1 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%a)
%2 : Tensor = aten::relu(%1)
%3 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%2)
%4 : Tensor = aten::relu(%3)
%5 : Tensor = prim::CallFunction(%4)
%6 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%4)
return (%6)
"""
graph = torch._C.parse_ir(ir)
torch._C._jit_pass_create_autodiff_subgraphs(graph)
for n in graph.nodes():
if n.kind() == "prim::DifferentiableGraph":
diff_graph = n.g("Subgraph")
outputs = list(diff_graph.outputs())
self.assertEqual(1, len(outputs))
output = outputs[0]
self.assertEqual(False, output.requiresGrad())
FileCheck().check("= prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check(" = aten::relu") \
.check("requires_grad=0") \
.check("aten::relu") \
.run(graph)