| # Owner(s): ["oncall: jit"] |
| |
| import os |
| import sys |
| import unittest |
| |
| import torch |
| import torch.nn as nn |
| import torch.nn.parallel as dp |
| |
| # Make the helper files in test/ importable |
| pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) |
| sys.path.append(pytorch_test_dir) |
| from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA_MULTI_GPU |
| |
| if __name__ == '__main__': |
| raise RuntimeError("This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_jit.py TESTNAME\n\n" |
| "instead.") |
| |
| class TestDataParallel(JitTestCase): |
| class Mpy(torch.nn.Module): |
| def __init__(self): |
| super(TestDataParallel.Mpy, self).__init__() |
| self.m = nn.Sequential(nn.Linear(2, 2), nn.BatchNorm1d(2), |
| nn.ReLU(), nn.Linear(2, 2)) |
| |
| @torch.jit.ignore |
| def forward(self, input): |
| return self.m(input) |
| |
| class Mpy1(torch.nn.Module): |
| def __init__(self, block): |
| super(TestDataParallel.Mpy1, self).__init__() |
| self.m = block |
| |
| @torch.jit.ignore |
| def forward(self, input): |
| return self.m.forward(input) |
| |
| class Mpy2(torch.nn.Module): |
| def __init__(self, block1, block2): |
| super(TestDataParallel.Mpy2, self).__init__() |
| self.m1 = block1 |
| self.m2 = block2 |
| |
| @torch.jit.ignore |
| def forward(self, input): |
| x = self.m1.forward(input) |
| return self.m2(x) |
| |
| class Msm(torch.jit.ScriptModule): |
| |
| __constants__ = ['m'] |
| |
| def __init__(self): |
| super(TestDataParallel.Msm, self).__init__() |
| self.m = nn.Sequential(nn.Linear(2, 2), nn.BatchNorm1d(2), |
| nn.ReLU(), nn.Linear(2, 2)) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| return self.m(input) |
| |
| class Msm1(torch.jit.ScriptModule): |
| def __init__(self, block): |
| super(TestDataParallel.Msm1, self).__init__() |
| self.block = block |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| x = self.block(input) |
| return x |
| |
| def check_replicas(self, module, replicas, input_shape=(2, 2)): |
| input = torch.randn(input_shape).cuda() |
| expected_output = module(input).data |
| for i, replica in enumerate(replicas): |
| for p in replica.parameters(): |
| self.assertEqual(p.get_device(), i) |
| for b in replica.buffers(): |
| self.assertEqual(b.get_device(), i) |
| replica_input = input.cuda(i) |
| self.assertEqual(replica(replica_input).data, expected_output) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported") |
| def test_python_submodule_script(self): |
| module = self.Mpy1(self.Msm()).cuda() |
| replicas = dp.replicate(module, {0, 1}) |
| self.check_replicas(module, replicas) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported") |
| def test_shared_module(self): |
| s = self.Msm() |
| p1 = self.Mpy1(s) |
| module = self.Mpy2(p1, s).cuda() |
| replicas = dp.replicate(module, {0, 1}) |
| self.check_replicas(module, replicas) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported") |
| def test_traced_module(self): |
| module = torch.jit.trace(self.Mpy1(self.Mpy()), torch.ones(2, 2)).cuda() |
| replicas = dp.replicate(module, {0, 1}) |
| self.check_replicas(module, replicas) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported") |
| def test_tensor_sharing(self): |
| module = self.Msm1(self.Msm()).cuda() |
| replica = dp.replicate(module, {0, 1}) |
| |
| def assert_share_data(t1, t2): |
| # Only checks that they point to the same memory on the same device. |
| if t1.device != t2.device: |
| return False |
| if t1.storage().data_ptr() != t2.storage().data_ptr(): |
| return False |
| return True |
| |
| for p1, p2 in zip(module.parameters(), replica[0].parameters()): |
| self.assertTrue(assert_share_data(p1, p2)) |
| |
| for p1, p2 in zip(module.buffers(), replica[0].buffers()): |
| self.assertTrue(assert_share_data(p1, p2)) |
| |
| for p1, p2 in zip(module.parameters(), replica[1].parameters()): |
| self.assertFalse(assert_share_data(p1, p2)) |
| |
| for p1, p2 in zip(module.buffers(), replica[1].buffers()): |
| self.assertFalse(assert_share_data(p1, p2)) |
| |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "multi-GPU not supported") |
| def test_tensor_sharing_with_forward(self): |
| module = self.Msm1(self.Msm()).cuda() |
| replica = dp.replicate(module, {0, 1}) |
| x = torch.ones(2, 2, requires_grad=True).cuda() |
| first_forward = module(x) |
| first_forward.sum().backward() |
| with torch.no_grad(): |
| for p in module.parameters(): |
| # Use .data here to avoid version counter bump. |
| # The graph created by the following forward will be wrong but |
| # we never backward through them so it's fine |
| p.data -= 1. * p.grad |
| second_forward = module(x) |
| |
| # replica which is on the same GPU has a shallow copy of the original |
| # params and buffers |
| r0_forward = replica[0](x) |
| self.assertEqual(second_forward, r0_forward) |
| |
| # replica which is on a different GPU has a deep copy of the original |
| # params and buffers |
| x1 = torch.ones(2, 2, requires_grad=True).cuda(device=1) |
| r1_forward = replica[1](x1) |
| self.assertEqual(first_forward, r1_forward) |