blob: 81df055f55b7c80f0b3b308a9324d0079f5e5c27 [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import os
import sys
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, warmup_backward, FileCheck
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestProfiler(JitTestCase):
def setUp(self):
self.prev_exec = torch._C._jit_set_profiling_executor(True)
self.prev_profiling = torch._C._get_graph_executor_optimize(True)
self.inline_autodiff = torch._C._debug_set_autodiff_subgraph_inlining(False)
self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
self.can_fuse_on_cpu = torch._C._jit_can_fuse_on_cpu()
torch._C._jit_set_texpr_fuser_enabled(True)
torch._C._jit_override_can_fuse_on_cpu(True)
self.default_dtype = torch.get_default_dtype()
self.old_reduction_enabled = torch._C._jit_set_texpr_reductions_enabled(True)
torch.set_default_dtype(torch.double)
self.old_fusion_inlining = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(False)
self.old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu()
torch._C._jit_set_te_must_use_llvm_cpu(False)
def tearDown(self):
torch._C._jit_set_profiling_executor(self.prev_exec)
torch._C._get_graph_executor_optimize(self.prev_profiling)
torch._C._debug_set_autodiff_subgraph_inlining(self.inline_autodiff)
torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state)
torch._C._jit_override_can_fuse_on_cpu(self.can_fuse_on_cpu)
torch.set_default_dtype(self.default_dtype)
torch._C._jit_set_texpr_reductions_enabled(self.old_reduction_enabled)
torch._C._debug_set_fusion_group_inlining(self.old_fusion_inlining)
torch._C._jit_set_te_must_use_llvm_cpu(self.old_te_must_use_llvm_cpu)
def test_tensor_type_not_determined_by_inputs(self):
@torch.jit.script
def scalar_type_input(x, y, z):
return x + y + 4 + z.item()
x = torch.tensor([2, 2])
scalar_type_input(x, x, torch.tensor(1))
scalar_type_input(x, x, torch.tensor(1))
scalar_type_input(x, x, torch.tensor(1.0))
g = torch.jit.last_executed_optimized_graph()
# item & add should not get pulled into the fusion group -
# we expect to see Fusion Group (item / add) Fusion Group in ir dump
FileCheck().check("TensorExpr").check("Scalar = aten::item").check_next("Tensor = aten::add").check("TensorExpr").run(g)
@torch.jit.script
def non_const_dtype(x, y, cond: bool):
dtype = torch.int16 if cond else torch.int32
return (x + y + 3).sum(dtype=dtype)
non_const_dtype(x, x, True)
non_const_dtype(x, x, True)
g = torch.jit.last_executed_optimized_graph()
# because dtype is non-const, sum should not get pulled into the Fusion Group
FileCheck().check("TensorExpr").check("TensorExpr").check_not("aten::sum").run(g)
def test_specialize_backward(self):
def test_fuse(a, b):
c = a * b
d = c * b
return d
test_fuse.__disable_jit_function_caching__ = True
scripted_f = torch.jit.script(test_fuse)
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
scripted_f(x, y)
b = scripted_f(x, y)
warmup_backward(b)
g = torch.jit.last_executed_optimized_graph()
# Backward has an if node guarding specializations,
# within the if node true block there is only one if node
# that guards a tensorexpr group
optimized_block = next(g.findNode("prim::If").blocks())
if_nodes = list(optimized_block.findAllNodes("prim::If"))
self.assertEqual(len(if_nodes), 1)
FileCheck().check("Group[Subgraph").run(str(if_nodes[0]))
# no broadcasts occurred, sum_to_size have been specialized out
self.assertIsNone(optimized_block.findNode("aten::_grad_sum_to_size"))
broadcast_f = torch.jit.script(test_fuse)
x = torch.ones([2, 2], requires_grad=True)
y = torch.ones([1], requires_grad=True)
broadcast_f(x, y)
b = broadcast_f(x, y)
b.backward(torch.ones([2, 2], dtype=torch.float), retain_graph=True)
b.backward(torch.ones([2, 2], dtype=torch.float))
# warmup_backward(b, torch.ones([2, 2], dtype=torch.float))
g = torch.jit.last_executed_optimized_graph()
optimized_block = next(g.findNode("prim::If").blocks())
# broadcasts occurred, currently expect to see aten::_grad_sum_to_size
self.assertIsNotNone(optimized_block.findNode("aten::_grad_sum_to_size"))
def test_specialized_types(self):
@torch.jit.script
def test_fuse(a, b):
c = a * b
d = c * b
return d
x = torch.tensor([.5])
for _ in range(3):
test_fuse(x, x)
g = torch.jit.last_executed_optimized_graph()
# Types should remain specialized for typecheck outputs & fusion outputs
FileCheck().check("Double(").check_same("prim::TypeCheck").check_same("\n").check("Double").check_same("TensorExpr").run(g)
# other outputs should not be specialized
FileCheck().check("Tensor = prim::If").run(g)
def test_aliasing_merge(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
d.add_(b)
e = d * b
return d + e
x = torch.ones(1)
y = torch.ones(1)
foo(x, y)
b = foo(x, y)
g = torch.jit.last_executed_optimized_graph()
self.assertEqual(len(list(g.findAllNodes("prim::TypeCheck"))), 2)
FileCheck().check("TensorExpr").check("aten::add_").check("TensorExpr").run(g)
def test_use_not_profiled(self):
def foo(t1, t2, t3, t4, t: float):
h = t1 + t2 + t3 + t4
if t > 0.5:
# Putting a use of t1 in a never-executed conditional prevents
return t1 + 1
return h
t = torch.rand(8, dtype=torch.float)
foo_script = torch.jit.script(foo)
for _ in range(torch._C._jit_get_num_profiled_runs() + 1):
foo_script(t, t, t, t, 0.1)
self.assertEqual(foo(t, t, t, t, 0.1), foo_script(t, t, t, t, 0.1))
g = torch.jit.last_executed_optimized_graph()
# all adds fused
FileCheck().check("graph").check_not("aten::add").check("prim::If").run(g)
def test_not_fusing_scalar_ops(self):
@torch.jit.script
def foo(x: int, y: int):
return x + y + 2 + 4 + 5 + 6
foo(1, 2)
foo(2, 3)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_not("TensorExpr").run(g)
def test_not_optimizing_property(self):
@torch.jit.script
def foo(x, y):
return x + y + 1 + 2 + 3, x.size()
x = torch.ones(1)
foo(x, x)
foo(x, x)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("aten::size").run(g)
x = torch.ones([2, 3, 5])
self.assertEqual(foo(x, x), (x + x + 1 + 2 + 3, x.size()))
def test_fallback_graph_not_specialized(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
e = d * b
return d + e
x = torch.ones(1)
y = torch.ones(1)
foo(x, y)
foo(x, y)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("CallFunction").check_next("Tensor = prim::TupleUnpack").run(g)
def test_autograd_fallback_graph(self):
@torch.jit.script
def foo(a, b):
c = a * b
d = c * b
e = d * b
return d + e
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
foo(x, y)
b = foo(x, y)
b.backward(torch.ones([1], dtype=torch.float), retain_graph=True)
b.backward(torch.ones([1], dtype=torch.float))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check("fallback_function").check_next("CallFunction").run(g)
def test_tensor_constant(self):
def foo(a, b):
return a + b + torch.tensor([2])
x = torch.ones(1, requires_grad=False)
foo_script = torch.jit.script(foo)
foo_script(x, x)
foo_script(x, x)
self.assertEqual(foo_script(x, x), foo(x, x))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_count("aten::add", 2, exactly=True).run(g)
def test_local_fusion_strategy(self):
@torch.jit.script
def foo(x):
return x + x + x
torch.jit.set_fusion_strategy([("STATIC", 1)])
for _ in range(3):
foo(torch.rand([10]))
torch.jit.set_fusion_strategy([("STATIC", 10)])
for i in range(10):
foo(torch.rand([i]))
foo(torch.rand([i]))
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_count(":TensorExprGroup", 2, exactly=True).run(g)
def test_iterative_fusion(self):
@torch.jit.script
def foo(a, b, c, d):
a = a + b
b.add_(3)
c = c + b + d
a = a + 1
return a, c
x = torch.ones(1, requires_grad=False)
foo(x, x, x, x)
foo(x, x, x, x)
# when we iterate through the block, we will start
# by fusing a = a + b with a = a + 1
# if we were to continue iteration from that fusion point,
# would miss the fusion opportunity of c = c + d + b
g = torch.jit.last_executed_optimized_graph()
self.assertEqual(len(list(g.findAllNodes("prim::TensorExprGroup"))), 2)