blob: 4da23dc66fc3b7d18904cba08ced2d907c0d70d5 [file] [log] [blame]
# Owner(s): ["module: mta"]
import itertools
from numbers import Number
import random
import re
import torch
import unittest
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import (
foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db,
foreach_reduce_op_db)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, all_types_and, integral_types, complex_types,
floating_types_and, floating_types, integral_types_and,
)
# Includes some values such that N * N won't be a multiple of 4,
# which should ensure we test the vectorized and non-vectorized
# kernel code paths.
N_values = [20, 23] if not TEST_WITH_SLOW else [23, 30, 300]
Scalars = (
random.randint(1, 10),
1.0 - random.random(),
True,
complex(1.0 - random.random(), 1.0 - random.random()),
)
def getScalarLists(N):
return (
("int", [random.randint(0, 9) + 1 for _ in range(N)]),
("float", [1.0 - random.random() for _ in range(N)]),
("complex", [complex(1.0 - random.random(), 1.0 - random.random()) for _ in range(N)]),
("bool", [True for _ in range(N)]),
("mixed", [1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 3)]),
("mixed", [True, 1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 4)]),
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, values=None, **kwargs):
if values is not None:
assert len(inputs) == 3
if isinstance(values, Number):
values = [values for _ in range(len(inputs[0]))]
return [self.func(*i, value=values[idx], **kwargs) for idx, i in enumerate(zip(*inputs))]
if len(inputs) == 2 and isinstance(inputs[1], Number):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func, n_expected_cudaLaunchKernels):
self.func = func
self.n_expected_cudaLaunchKernels = n_expected_cudaLaunchKernels
# Some foreach functions don't have in-place implementations.
self._is_inplace = False if func is None else func.__name__.endswith('_')
def __call__(self, inputs, is_cuda, is_fastpath, **kwargs):
actual = None
if (
is_cuda and
torch.autograd.kineto_available() and
torch.profiler.ProfilerActivity.CUDA in torch.profiler.supported_activities()
):
with torch.profiler.profile(activities=(torch.profiler.ProfilerActivity.CPU,)) as p:
actual = self.func(*inputs, **kwargs)
for e in p.key_averages():
if e.key == 'cudaLaunchKernel':
if is_fastpath:
assert e.count == self.n_expected_cudaLaunchKernels
else:
assert e.count > self.n_expected_cudaLaunchKernels
else:
actual = self.func(*inputs, **kwargs)
# note(mkozuki): inplace foreach functions are void functions.
return inputs[0] if self._is_inplace else actual
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == 'cuda'
# note(mkozuki): It might be the case that the expected number of `cudaLaunchKernel`s
# is greater than 1 once foreach functions internally separate their input `TensorList`s by
# devices & dtypes into vectors of tensors.
def _get_funcs(self, op, n_expected_cudaLaunchKernels):
return (
ForeachFuncWrapper(op.method_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref_inplace),
)
def _binary_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, alpha=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(actual, expected)
if alpha is not None:
kwargs = {'alpha': alpha}
ref_inputs = inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(expected, actual, atol=1.e-3, rtol=default_tolerances(dtype)[0])
else:
self.assertEqual(expected, actual)
def _test_binary_op_tensorlists(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
if opinfo.supports_alpha_param:
alpha = None
if dtype in integral_types():
alpha = 3
elif dtype.is_complex:
alpha = complex(3, 3)
else:
alpha = 3.14
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, alpha=alpha)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, alpha=alpha)
# Tests of implicit broadcasting
# When sizes of tensors don't match, foreach functions are supposed to choose slow path
# even if this methods's argument `is_fastpath` is True.
# `cudaLaunchKernel` will be equal to `N`. For assert in `ForeachFuncWrapper` to pass,
# we pass `is_fastpath and disable_fastpath` to `_binary_test`'s argument of is_fastpath.
# as n_expected_cudaLaunchKernels is N if disable_fastpath.
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
[
make_tensor((N - i , 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._binary_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False)
self._binary_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_fastpath(self, device, dtype, op):
for N in N_values:
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if op.ref == torch.add and dtype == torch.bool:
disable_fastpath = True
self._test_binary_op_tensorlists(device, dtype, op, N, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_slowpath(self, device, dtype, op):
for N in N_values:
self._test_binary_op_tensorlists(device, dtype, op, N, False, False)
def _test_binary_op_scalar(self, device, dtype, opinfo, N, scalar, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalar]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalar_fastpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if isinstance(scalar, int):
disable_fastpath |= dtype == torch.bool
if isinstance(scalar, float):
disable_fastpath |= dtype in integral_types_and(torch.bool)
if isinstance(scalar, bool):
disable_fastpath |= dtype == torch.bool
if op.ref in (torch.add, torch.mul):
disable_fastpath = False
if isinstance(scalar, complex):
disable_fastpath |= dtype not in complex_types()
self._test_binary_op_scalar(device, dtype, op, N, scalar, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalar_slowpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
self._test_binary_op_scalar(device, dtype, op, N, scalar, False, False)
def _test_binary_op_scalarlist(self, device, dtype, opinfo, N, scalarlist, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalarlist]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
# note(mkozuki): Why two functions depending on with/without bool?
# `foreach_sub` & `foreach_sub_` do `sub_check(tensors[i], scalars[i])` from i=1...N.
# So, if scalarlist has one or more bool values, `foreach_sub` and `foreach_sub_`
# raise bool subtraction error before doing any math.
# While regular `sub` and `sub_` do some math until they encounter bool.
# So, foreach sub's throw bool sub error first. However, regular sub's throw different
# errors depending on the order of scalarlist. To keep actual unit test impl simple,
# separating mixed scalarlist tests. By setting the first element of scalarlist to bool,
# they are expected to throw bool sub error even in inplace test.
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_fastpath(self, device, dtype, op):
for N in N_values:
for type_str, scalarlist in getScalarLists(N):
bool_int_div = op.ref == torch.div and dtype in integral_types_and(torch.bool)
disable_fastpath = bool_int_div
if type_str == "int":
disable_fastpath |= dtype == torch.bool
if type_str == "float":
disable_fastpath |= dtype in integral_types_and(torch.bool)
if type_str == "complex":
disable_fastpath |= dtype not in complex_types()
if type_str == "mixed":
disable_fastpath |= True and dtype not in complex_types()
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_slowpath(self, device, dtype, op):
for N in N_values:
for _, scalarlist in getScalarLists(N):
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, False, False)
def _pointwise_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, values=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(expected, actual)
if values is not None:
try:
actual = op(inputs + [values], self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, values=values)
else:
expected = ref(ref_inputs, values=values)
self.assertEqual(expected, actual)
def _test_pointwise_op(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath, *, values=None):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, values=values)
self._pointwise_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, values=values)
# Tests of implicit broadcasting
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath, same_size=True),
[
make_tensor((N - i, 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
[
make_tensor((1, N - i), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False, values=values)
self._pointwise_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True, values=values)
@skipMeta
@ops(foreach_pointwise_op_db)
def test_pointwise_op_fastpath(self, device, dtype, op):
disable_fastpath = dtype in integral_types_and(torch.bool)
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, True, disable_fastpath, values=scalarlist)
@ops(foreach_pointwise_op_db)
def test_pointwise_op_slowpath(self, device, dtype, op):
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, False, False)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, False, False, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, False, False, values=scalarlist)
# note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
# To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
# this test does not use `try-except` for fastpath.
def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
if is_fastpath:
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
return
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(inputs)
else:
expected = ref(inputs)
self.assertEqual(actual, expected)
# note(mkozuki): why `try-except` for both fastpath?
# - inputs for fastpath can be integer tensors.
# - this is becase opinfo dtypes are configured for outpulace implementation
# - for integer inputs, trigonometric functions and exponential function returns float outputs,
# which causes "result type Float can't be case to the desired type" error.
# Thus, `try-except` is used even if `is_fastpath` is `True`.
def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs, is_fastpath):
copied_inputs = [[t.clone().detach() for t in tensors] for tensors in inputs]
try:
inplace(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
inplace_ref(copied_inputs)
else:
inplace_ref(copied_inputs),
self.assertEqual(copied_inputs, inputs)
def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
inputs = opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
# note(mkozuki): Complex inputs for `_foreach_abs` go through slowpath.
if opinfo.name == "_foreach_abs" and dtype in complex_types():
is_fastpath = False
self._regular_unary_test(dtype, op, ref, inputs, is_fastpath)
self._inplace_unary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath)
@skipMeta
@ops(foreach_unary_op_db)
def test_unary_fastpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=True)
@ops(foreach_unary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_unary_slowpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=False)
def _minmax_test(self, opinfo, inputs, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
# note(mkozuki): in-place of foreach_minimum and foreach_maximum aren't implemented.
@ops(foreach_minmax_op_db)
def test_minmax_fastpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N) for _ in range(2))
self._minmax_test(op, inputs, True, N if dtype == torch.bool else 1)
@ops(foreach_minmax_op_db,
dtypes=all_types_and(torch.half, torch.bfloat16, torch.bool))
def test_minmax_slowpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N, noncontiguous=True) for _ in range(2))
self._minmax_test(op, inputs, False, 1)
# note(mkozuki): ForeachFuncInfo's of both `_foreach_maximum` and `_foreach_minimum` include integer types.
# so, manually limit dtypes to fp types for inf&nan tests.
@ops(foreach_minmax_op_db, dtypes=floating_types_and(torch.half, torch.bfloat16))
def test_minmax_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
[
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
)
self._minmax_test(op, inputs, True, 1)
def _reduce_test(self, opinfo, inputs, ord, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
self.assertEqual(ref(inputs, ord=ord), op(inputs, self.is_cuda, is_fastpath, ord=ord))
@ops(foreach_reduce_op_db)
def test_reduce_fastpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
n_expected_cudaLaunchKernels = 3
else:
n_expected_cudaLaunchKernels = N
inputs = op.sample_inputs(device, dtype, N, noncontiguous=False),
self._reduce_test(op, inputs, ord, True, n_expected_cudaLaunchKernels)
@ops(foreach_reduce_op_db)
def test_reduce_slowpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
inputs = op.sample_inputs(device, dtype, N, noncontiguous=True),
self._reduce_test(op, inputs, ord, False, 1)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
# note(mkozuki): this test case fails with Meta at least in my local environment.
# The message was
# `AssertionError: NotImplementedError("Could not run 'aten::_foreach_add.Scalar' with arguments from the 'Meta' backend.`
@skipMeta
@ops(foreach_binary_op_db, allowed_dtypes=[torch.float])
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op_(tensors1, tensors2)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
try:
foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
if dtype == torch.bool and foreach_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op_([tensor1], [tensor2])
return
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op([tensor1], [tensor2])
if dtype in integral_types_and(torch.bool) and foreach_op == torch._foreach_div:
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op_([tensor1], [tensor2])
@skipMeta
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_slow_path(self, device, dtype, op):
# note(mkozuki): why `n_expected_cudaLaunchKernels=0`?
# In this test, foreach functions don't go through fast path,
# but as there is only one tensor in each list of tensors,
# `cudaLaunchKernel` is 1 so ForeachFuncWrapper internal assert fails.
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op, n_expected_cudaLaunchKernels=0)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# non contiguous
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
tensor2 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[:, :, :, ::7]
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op, 1)
# tensors: ['cuda', 'cpu]
tensors = op.sample_inputs(device, dtype, 2)
tensors[1] = tensors[1].to('cpu')
try:
actual = method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref_inplace((tensors,))
else:
self.assertEqual(expected, tensors)
@onlyCUDA
@ops(foreach_binary_op_db)
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
# `tensors1`: ['cuda', 'cpu']
# `tensors2`: ['cuda', 'cpu']
_cuda_tensors = op.sample_inputs(device, dtype, 2, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 2, same_size=True)
tensors1, tensors2 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
_cuda_tensors = op.sample_inputs(device, dtype, 3, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 3, same_size=True)
tensors1, tensors2, tensors3 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = [t * scaler for t in op.sample_inputs(device, dtype, N, noncontiguous=False, low=1)],
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op, 3)
actual = fn(inputs, is_cuda=True, is_fastpath=True, ord=ord)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(all(torch.isinf(e) for e in expect))
self.assertEqual(expect, actual, equal_nan=False)
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()