| # Owner(s): ["module: fx.passes"] |
| |
| import operator |
| import logging |
| |
| import torch |
| from torch.fx._symbolic_trace import symbolic_trace |
| |
| from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner |
| from torch.fx.passes.operator_support import OperatorSupport |
| from torch.fx.passes.utils.fuser_utils import fuse_by_partitions |
| |
| from torch.testing._internal.common_utils import run_tests, parametrize, instantiate_parametrized_tests |
| from torch.testing._internal.jit_utils import JitTestCase |
| |
| logging.basicConfig(level=logging.WARNING) |
| logger = logging.getLogger(__name__) |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.linear = torch.nn.Linear(4, 4) |
| self.linear2 = torch.nn.Linear(4, 4) |
| self.param = torch.nn.Parameter(torch.rand(4, 4)) |
| |
| def forward(self, a, b, c): |
| add = a + b |
| |
| linear_1 = self.linear(add) |
| |
| add_1 = add + c |
| add_2 = add_1 + self.param |
| add_3 = add_1 + linear_1 |
| add_4 = add_2 + add_3 |
| |
| linear_2 = self.linear2(add_4) |
| |
| add_5 = linear_2 + add_4 |
| add_6 = add_5 + a |
| relu = add_6.relu() |
| |
| return add_4, add_6, relu |
| |
| class TestPartitionFunctions: |
| @staticmethod |
| def forward1(a, b, c): |
| add = a + b |
| add_1 = add + b |
| add_2 = add_1 + c |
| relu_1 = add_2.relu() |
| add_3 = add_1 + add_2 |
| add_4 = add_1 + relu_1 + add_3 |
| relu_2 = add_4.relu() |
| add_5 = relu_2 + add_4 |
| add_6 = add_5 + add_4 |
| return add_4, add_6 |
| |
| @staticmethod |
| def forward2(a, b, _): |
| add = a + b |
| add_1 = add + b |
| relu_1 = add_1.relu() # blocked by this |
| add_3 = add_1 + relu_1 |
| add_4 = add_1 + add_3 |
| return add_4, add_1 |
| |
| @staticmethod |
| def forward3(a, b, c): |
| add = a + b |
| add_1 = a + c |
| add_2 = b + c |
| return add, add_1, add_2 |
| |
| @staticmethod |
| def forward4(a, b, c): |
| add = a + b |
| add_1 = a + c |
| add_2 = b + c |
| return torch.where(add > 0, add_1, add_2) |
| |
| @staticmethod |
| def forward5(a, b, c): |
| # add should be fused right branch, as left branch is not supported |
| add = a + 1 |
| # left branch |
| relu = add.relu() |
| # right branch |
| add_1 = add + 2 |
| return relu, add_1 |
| |
| @staticmethod |
| def forward6(a, b, c): |
| # add should have its own partition, as neither branchs are supported |
| add = a + 1 |
| # left branch |
| relu = add.relu() |
| # right branch |
| relu_1 = add.relu() |
| return relu, relu_1 |
| |
| @staticmethod |
| def forward7(a, b, c): |
| # both branches are supported, all adds should be fused together |
| add = a + 1 |
| # left branch |
| add_1 = add + 2 |
| # right branch is larger |
| add_2 = add + 1 |
| add_3 = add_2 + 1 |
| return add_3, add_1 |
| |
| @staticmethod |
| def forward8(a, b, c): |
| # both branches are in the same partition, add should join the same partition |
| add = a + 1 |
| # left branch |
| add_1 = add + 2 |
| # right branch |
| add_2 = add + 1 |
| # left and right branch merges |
| add_3 = add_2 + add_1 |
| |
| return add_3 |
| |
| @staticmethod |
| def forward9(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add + 1 |
| # branch 2 |
| add_2 = add + 1 |
| # branch_3 |
| add_3 = add + 1 |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| @staticmethod |
| def forward10(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add + 1 |
| # branch 2 |
| add_2 = add + 1 |
| # branch 3: depends on branch 2 |
| add_3 = add + add_2 |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| @staticmethod |
| def forward11(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add.relu() |
| # branch 2 depends on branch 1 |
| add_2 = add + add_1 |
| # branch 3 |
| add_3 = add.relu() |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| # A mock OperatorSupport class, where only operator.add is supported |
| class MockOperatorSupport(OperatorSupport): |
| def is_node_supported(self, submodules, node: torch.fx.Node) -> bool: |
| return node.op == "call_function" and node.target in {operator.add} |
| |
| class TestFXGraphPasses(JitTestCase): |
| |
| @parametrize("fn, expected_partition", [ |
| (TestPartitionFunctions.forward1, [["add_7", "add_6"], ["add_5", "add_4", "add_3"], ["add_2", "add_1", "add"]]), |
| (TestPartitionFunctions.forward2, [["add_3", "add_2"], ["add_1", "add"]]), |
| |
| # 2 branches cases |
| (TestPartitionFunctions.forward5, [["add_1", "add"]]), |
| (TestPartitionFunctions.forward6, [["add"]]), |
| (TestPartitionFunctions.forward7, [["add_3", "add_2", "add", "add_1"]]), |
| (TestPartitionFunctions.forward8, [["add_3", "add_2", "add", "add_1"]]), |
| |
| # 3 branch cases |
| (TestPartitionFunctions.forward9, [['add_3', 'add_2', 'add_1', 'add']]), |
| (TestPartitionFunctions.forward10, [['add_3', 'add_2', 'add', 'add_1']]), |
| (TestPartitionFunctions.forward11, [['add_1'], ['add']]), |
| ]) |
| def test_partitioner(self, fn, expected_partition): |
| traced = symbolic_trace(fn) |
| |
| supported_ops = MockOperatorSupport() |
| partitioner = CapabilityBasedPartitioner(traced, supported_ops, allows_single_node_partition=True) |
| partitions = partitioner.propose_partitions() |
| |
| partitions_name = [[node.name for node in partition.nodes] for partition in partitions] |
| assert len(partitions_name) == len(expected_partition) |
| for i in range(len(partitions_name)): |
| assert set(partitions_name[i]) == set(expected_partition[i]) |
| |
| fused_graph = partitioner.fuse_partitions(partitions) |
| |
| a, b, c = torch.rand(4), torch.rand(4), torch.rand(4) |
| |
| expected = fn(a, b, c) |
| result = fused_graph(a, b, c) |
| torch.testing.assert_close(expected, result) |
| |
| |
| @parametrize("fn, expected_partition", [ |
| # horizontal fusion without a common downstream node, not supported yet |
| (TestPartitionFunctions.forward3, [["add_2", "add_1", "add"]]), |
| # horizontal fusion with a common downstream node, not supported yet |
| (TestPartitionFunctions.forward4, [["add_2", "add_1", "add"]]), |
| ]) |
| def test_partitioner_xfail(self, fn, expected_partition): |
| traced = symbolic_trace(fn) |
| |
| supported_ops = MockOperatorSupport() |
| partitioner = CapabilityBasedPartitioner(traced, supported_ops, allows_single_node_partition=True) |
| partitions = partitioner.propose_partitions() |
| |
| partitions_name = [[node.name for node in partition.nodes] for partition in partitions] |
| with self.assertRaises(Exception): |
| assert len(partitions_name) == len(expected_partition) |
| |
| @parametrize("partition", [ |
| [['add', 'add_1'], ['add_5', 'add_6']], |
| [['add', 'add_1', 'add_2']], # vertical fusion |
| [['add_2', 'add_3']], # horizontal fusion |
| [['add_3', 'add_4']], |
| [['add_6', 'add_5']], # arbitray node order |
| [['add_4', 'add_1', 'add_3', 'add_2']], # arbitray node order |
| [['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']], # arbitray partition order |
| [['add_5', 'linear2']], # includes call_function + call_module node |
| [['add_6', 'relu']], # includes call_function + call_module node |
| [['param', 'add_2']], # includes get_attr + call_module nodes |
| [['param', 'add_1', 'linear']], # includes get_attr + call_function + call_module nodes |
| [["add", "linear", "add_1", "param", "add_2", "add_3", "add_4", "linear2", "add_5", "add_6", "relu"]], # full graph |
| ]) |
| def test_fuser_util(self, partition): |
| m = TestModule() |
| gm = symbolic_trace(m) |
| |
| nodes_by_name = {node.name : node for node in gm.graph.nodes} |
| |
| partitions = [] |
| for node_names in partition: |
| partitions.append([nodes_by_name[name] for name in node_names]) |
| |
| fused_graph = fuse_by_partitions(gm, partitions) |
| |
| a, b, c = torch.rand(4), torch.rand(4), torch.rand(4) |
| |
| expected = m(a, b, c) |
| result = fused_graph(a, b, c) |
| |
| torch.testing.assert_close(expected, result) |
| |
| @parametrize("partition", [ |
| [['add', 'add_1'], ['add_1', 'add_5', 'add_6']], # add_1 exists in multiple partitions |
| [['add', 'add_1', 'add_3']], # invalid partition: circular dependency |
| [['add_4', 'add_5']], # invalid partition: circular dependency |
| [['relu', 'add_5']], # invalid partition: circular dependency |
| ]) |
| def test_fuser_util_xfail(self, partition): |
| m = TestModule() |
| gm = symbolic_trace(m) |
| |
| nodes_by_name = {node.name : node for node in gm.graph.nodes} |
| |
| partitions = [] |
| for node_names in partition: |
| partitions.append([nodes_by_name[name] for name in node_names]) |
| |
| with self.assertRaises(Exception): |
| fuse_by_partitions(gm, partitions) |
| |
| instantiate_parametrized_tests(TestFXGraphPasses) |
| |
| if __name__ == "__main__": |
| run_tests() |