| # Owner(s): ["oncall: jit"] |
| |
| import contextlib |
| import unittest |
| import os |
| import random |
| import enum |
| import copy |
| from functools import reduce |
| import operator |
| import warnings |
| |
| import torch |
| from torch.nn import functional |
| from torch.profiler import profile, ProfilerActivity |
| |
| from torch.testing._internal.codegen.random_topo_test import runDefaultTestWithSeed |
| from torch.testing._internal.common_cuda import TEST_MULTIGPU |
| from torch.testing._internal.common_device_type import instantiate_device_type_tests, ops, OpDTypes |
| from torch.testing._internal.common_jit import JitCommonTestCase |
| from torch.testing._internal.common_methods_invocations import op_db, SampleInput |
| from torch.testing._internal.common_utils import run_tests, ProfilingMode, GRAPH_EXECUTOR, TEST_WITH_ROCM, slowTest, \ |
| is_iterable_of_tensors, freeze_rng_state |
| from torch.testing._internal.jit_utils import clone_inputs, get_traced_sample_variant_pairs, JitTestCase, RUN_CUDA |
| from torch.testing._internal.jit_metaprogramming_utils import create_traced_fn |
| from torch.testing import FileCheck |
| |
| from jit.test_fuser_common import TestFuserCommon # noqa: F401 |
| |
| import itertools |
| import numpy as np |
| import math |
| |
| from torch.autograd.gradcheck import gradcheck |
| |
| from typing import List |
| |
| RUN_NVFUSER = RUN_CUDA and not TEST_WITH_ROCM |
| CUDA_MAJOR, CUDA_MINOR = 0, 0 |
| |
| if RUN_NVFUSER and torch.version.cuda is not None: |
| CUDA_MAJOR, CUDA_MINOR = (int(x) for x in torch.version.cuda.split('.')[:2]) |
| |
| os.environ['PYTORCH_NVFUSER_ENABLE'] = 'linear_decomposition,conv_decomposition' |
| os.environ['PYTORCH_NVFUSER_DISABLE'] = 'fallback,fma,unroll_with_rng' |
| os.environ['PYTORCH_NVFUSER_JIT_OPT_LEVEL'] = '0' |
| # TODO: enable complex when we fixes the extremal cases in OpInfo |
| # see issue https://github.com/csarofeen/pytorch/issues/1730" |
| # os.environ['PYTORCH_NVFUSER_ENABLE'] = 'complex' |
| |
| if GRAPH_EXECUTOR == ProfilingMode.PROFILING: |
| torch._C._jit_set_texpr_fuser_enabled(False) |
| torch._C._jit_set_profiling_executor(True) |
| torch._C._jit_set_profiling_mode(True) |
| |
| FUSION_GROUP = 'prim::CudaFusionGroup' |
| FUSION_GUARD = 'prim::CudaFusionGuard' |
| # TODO: revert disabled alias ops |
| ALIAS_TEST_DISABLED = True |
| |
| |
| @contextlib.contextmanager |
| def nvfuser_singleton_fusion(flag): |
| old_value = torch._C._jit_set_nvfuser_single_node_mode(flag) |
| try: |
| yield |
| finally: |
| torch._C._jit_set_nvfuser_single_node_mode(old_value) |
| |
| @contextlib.contextmanager |
| def nvfuser_horizontal_fusion(flag): |
| old_value = torch._C._jit_set_nvfuser_horizontal_mode(flag) |
| try: |
| yield |
| finally: |
| torch._C._jit_set_nvfuser_horizontal_mode(old_value) |
| |
| def is_pre_volta(): |
| if not RUN_NVFUSER: |
| return False |
| prop = torch.cuda.get_device_properties(torch.cuda.current_device()) |
| return prop.major < 7 |
| |
| TEST_BF16 = RUN_NVFUSER and torch.cuda.is_bf16_supported() |
| |
| TEST_LARGE_TENSOR = RUN_NVFUSER |
| if RUN_NVFUSER: |
| torch.ones(1).cuda() # initialize cuda context |
| TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9 |
| |
| class CudaFuserTestOptions(): |
| def __init__(self): |
| self.old_cpu_fuse = torch._C._jit_can_fuse_on_cpu() |
| self.old_gpu_fuse = torch._C._jit_can_fuse_on_gpu() |
| torch._C._jit_override_can_fuse_on_cpu(False) |
| torch._C._jit_override_can_fuse_on_gpu(False) |
| self.old_guard = torch._C._jit_set_nvfuser_guard_mode(False) |
| torch._C._debug_set_autodiff_subgraph_inlining(False) |
| self.old_value = torch._C._jit_set_autocast_mode(True) |
| |
| if(RUN_CUDA): |
| self.old_nvfuser = torch._C._jit_set_nvfuser_enabled(True) |
| |
| def restore(self): |
| if(RUN_CUDA): |
| torch._C._jit_set_nvfuser_enabled(self.old_nvfuser) |
| torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuse) |
| torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuse) |
| torch._C._jit_set_nvfuser_guard_mode(self.old_guard) |
| torch._C._debug_set_autodiff_subgraph_inlining(True) |
| torch._C._jit_set_autocast_mode(self.old_value) |
| |
| class TestCudaFuser(JitTestCase): |
| def assertEqual(self, *args, **kwargs): |
| kwargs["exact_layout"] = True |
| super(JitTestCase, self).assertEqual(*args, **kwargs) |
| |
| def _getSubgraphInFusion(self, graph): |
| num_node = 0 |
| subgraph = None |
| |
| def count(block, ret): |
| for n in block.nodes(): |
| if n.kind() == FUSION_GROUP: |
| ret[0] = ret[0] + 1 |
| self.assertTrue(n.hasAttribute('Subgraph')) |
| ret[1] = n.g('Subgraph') |
| for block in n.blocks(): |
| count(block, ret) |
| ret = [num_node, subgraph] |
| count(graph, ret) |
| self.assertEqual(ret[0], 1) |
| return ret[1] |
| |
| def setUp(self): |
| super(TestCudaFuser, self).setUp() |
| |
| self.skip_node_list = [] |
| disabled_ops = ("aten::batch_norm", |
| "aten::_batch_norm_impl_index", |
| "aten::_batch_norm_impl_index_backward", |
| "aten::native_batch_norm_backward") |
| for op in disabled_ops: |
| disabled_flag = torch._C._jit_set_nvfuser_skip_node_kind(op, False) |
| if disabled_flag: |
| torch._C._jit_set_nvfuser_skip_node_kind(op, True) |
| self.skip_node_list.append(op) |
| |
| # cpu backup to avoid errors in case this is run on a CPU-only machine |
| dev = 'cuda' if RUN_NVFUSER else 'cpu' |
| self.special_values = torch.tensor( |
| [float("-inf"), -10, -math.pi, |
| -1, -0.5, 0, 1, 0.5, |
| math.pi, 10, float("inf"), |
| float("nan")], dtype=torch.float, device=dev) |
| |
| self.int_types = [ |
| torch.int8, |
| torch.uint8, |
| torch.int16, |
| torch.int32, |
| torch.int64 |
| ] |
| |
| self.support_tensor_dtypes = [ |
| torch.int32, |
| torch.int64, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| torch.bool, |
| torch.complex64, |
| torch.complex128, |
| ] |
| if TEST_BF16: |
| self.support_tensor_dtypes.append(torch.bfloat16) |
| |
| if(RUN_NVFUSER): |
| self.cuda_fuser_options = CudaFuserTestOptions() |
| |
| def tearDown(self): |
| # restoring skip node to the configuration before tests |
| for op in self.skip_node_list: |
| disabled_flag = torch._C._jit_set_nvfuser_skip_node_kind(op, False) |
| if not disabled_flag: |
| torch._C._jit_set_nvfuser_skip_node_kind(op, True) |
| |
| if(RUN_NVFUSER): |
| self.cuda_fuser_options.restore() |
| super(TestCudaFuser, self).tearDown() |
| |
| def _run_helper(self, jit_op, op, *args, check_stride=False, num_fusion=1, check_runs=1): |
| seed = 123 |
| torch.cuda.manual_seed_all(seed) |
| jit_o = jit_op(*args) |
| |
| for i in range(check_runs): |
| torch.cuda.manual_seed_all(seed + i) |
| jit_o = jit_op(*args) |
| torch.cuda.manual_seed_all(seed + i) |
| o = op(*args) |
| |
| if type(jit_o) is torch.Tensor: |
| jit_o = [jit_o, ] |
| o = [o, ] |
| |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| if check_stride: |
| self.assertEqual(oo.stride(), jit_oo.stride()) |
| |
| self.assertGraphContainsExactly(jit_op.graph_for(*args), FUSION_GUARD, num_fusion, consider_subgraphs=True) |
| |
| def _run_training_helper(self, jit_op, op, grads, *args): |
| torch.cuda.manual_seed_all(123) |
| jit_o = jit_op(*args) |
| jit_g = jit_o.backward(grads) |
| torch.cuda.manual_seed_all(123) |
| jit_o = jit_op(*args) |
| jit_g = jit_o.backward(grads) |
| torch.cuda.manual_seed_all(123) |
| jit_o = jit_op(*args) |
| jit_g = jit_o.backward(grads) |
| torch.cuda.manual_seed_all(123) |
| o = op(*args) |
| g = o.backward(grads) |
| self.assertEqual(o, jit_o) |
| self.assertEqual(g, jit_g) |
| self.assertGraphContainsExactly(jit_op.graph_for(*args), FUSION_GUARD, 1, consider_subgraphs=True) |
| bwd_graph = list( |
| list(jit_op.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| self.assertGraphContainsExactly(bwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_half(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, alpha: float): |
| o_16 = torch.add(x, y) |
| o_32_a = torch.add(y, z, alpha=alpha) |
| o_32_b = torch.add(o_16, z) |
| return (o_16, o_32_a, o_32_b) |
| |
| t_jit = torch.jit.script(t) |
| alpha = 0.5 |
| # stick to integers, this avoid the numerical difference due to our |
| # promotion |
| x = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| y = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| z = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda") |
| jit_o = t_jit(x, y, z, alpha) |
| jit_o = t_jit(x, y, z, alpha) |
| o = t(x, y, z, alpha) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, alpha), FUSION_GUARD) |
| |
| |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_bfloat(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, alpha: float): |
| o_16 = torch.add(x, y) |
| o_32_a = torch.add(y, z, alpha=alpha) |
| o_32_b = torch.add(o_16, z) |
| return (o_16, o_32_a, o_32_b) |
| |
| t_jit = torch.jit.script(t) |
| alpha = 0.5 |
| # stick to integers, this avoid the numerical difference due to our |
| # promotion |
| x = torch.randint(0, 256, (4, 8)).to(dtype=torch.bfloat16, device="cuda") |
| y = torch.randint(0, 256, (4, 8)).to(dtype=torch.bfloat16, device="cuda") |
| z = torch.randint(0, 256, (4, 8)).to(dtype=torch.bfloat16, device="cuda") |
| jit_o = t_jit(x, y, z, alpha) |
| jit_o = t_jit(x, y, z, alpha) |
| o = t(x, y, z, alpha) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, alpha), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_const(self): |
| def t(x, y): |
| o = x + y |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_chunk(self): |
| def t(x, y, z, q): |
| o = x + q |
| x0, x1 = torch.chunk(o, 2) |
| o = x0 + x1 |
| o = o + y |
| o = o * z |
| o = torch.relu(o) |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(2, 8, dtype=torch.float, device="cuda") |
| z = torch.randn(2, 8, dtype=torch.float, device="cuda") |
| q = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z, q) |
| jit_o = t_jit(x, y, z, q) |
| o = t(x, y, z, q) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, q), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_reduction_dtypes_axis(self): |
| |
| for op in [torch.sum, torch.mean, torch.amax, torch.var, torch.std]: |
| for dtype in [torch.float16, torch.float32, torch.double]: |
| for axis in [-1, 2, 0]: |
| def make_func(op): |
| def func(x: torch.Tensor): |
| o = torch.mul(x, 2.0) |
| o = op(o, dim=[axis]) |
| return o |
| return func |
| |
| x = torch.randn(8, 4, 16, dtype=dtype, device="cuda") |
| t = make_func(op) |
| t_jit = torch.jit.trace(t, x) |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4)) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_variance(self): |
| |
| for op in [torch.var, torch.std]: |
| for dtype in [torch.float16, torch.float32, torch.double]: |
| for axis in [-2, -1, 2, 1]: |
| for unbiased in [False, True]: |
| def make_func(op): |
| def func(x: torch.Tensor): |
| o = torch.mul(x, 2.0) |
| o = op(o, dim=[axis]) |
| return o |
| return func |
| |
| x = torch.randn(8, 4, 16, dtype=dtype, device="cuda") |
| t = make_func(op) |
| t_jit = torch.jit.trace(t, x) |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4)) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_scalar_input(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 1, 32, dtype=torch.float, device="cuda") |
| y = y.expand(4, 8, 32, 32) |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_0(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_1(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(1, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_2(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 1, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(8, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_3(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(8, 17, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(8, 17, 1, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False) |
| |
| # test_broadcasting_partition_logic_X |
| # Testing partition logic that is capable to avoid creating unsupported |
| # broadcasting semantics in CudaFusionGroup |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_partition_logic_0(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| x = x + 12.0 |
| o1 = x + y |
| o2 = x + z |
| o = o1 + o2 |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 6, 8, dtype=torch.float32, device="cuda") |
| y = torch.randn(8, 6, 8, dtype=torch.float32, device="cuda") |
| z = torch.randn(6, 8, dtype=torch.float32, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, z)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 4, consider_subgraphs=False) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_partition_logic_1(self): |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| x = x + 12.0 |
| o1 = x + y |
| o2 = x + z |
| o = o1 + o2 |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(8, 6, 8, dtype=torch.float32, device="cuda") |
| y = torch.randn(4, 8, 6, 8, dtype=torch.float32, device="cuda") |
| z = torch.randn(4, 1, 6, 8, dtype=torch.float32, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, z)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 4, consider_subgraphs=False) |
| |
| @unittest.skipIf(True, "Broadcast with different output not supported yet") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_multiple_output_shape(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = x + 12 |
| o1 = o + y |
| o2 = o + z |
| oo = o1.sum() + o2.sum() |
| return oo |
| t_jit = torch.jit.script(t) |
| x = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(2, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| # Currently cannot fuse this |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(True, "broadcast on branches can't be resolved yet") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_broadcasting_multiple_output(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = x + 12 |
| o1 = o + y |
| o2 = o + z |
| oo = o1.sum() + o2.sum() |
| return oo |
| t_jit = torch.jit.script(t) |
| x = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o, jit_o) |
| # Currently cannot fuse this |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| def _unary_test_helper(self, operation, dtype, random_data): |
| gradient_check = (dtype == torch.float64) and random_data |
| shape = self.special_values.shape |
| torch.cuda.manual_seed_all(211) |
| |
| # need additional def of t for boolean ops |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = x * y |
| o = o + 5e-3 |
| o = operation(o) |
| return o |
| |
| y = torch.rand(shape, dtype=torch.float32, device="cuda", requires_grad=gradient_check) |
| y = y.to(dtype=dtype) |
| |
| if random_data: |
| x = torch.rand(shape, dtype=torch.float32, device="cuda", requires_grad=gradient_check) |
| if dtype in self.int_types: |
| # prefer a larger variance for integer types |
| x = x * 5 |
| x = x.to(dtype=dtype) |
| else: |
| x = self.special_values.to(dtype=dtype) |
| try: |
| ref = t(x, y) |
| except Exception: |
| # same way as TE checker, if eager mode throws, ignore this test |
| return |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| if gradient_check: |
| if jit_o.dtype != torch.bool: |
| # bool dtype has no `-` |
| gradcheck(t_jit, [x, y], nondet_tol=1e-5) |
| elif dtype in self.support_tensor_dtypes: |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| o = t(x, y) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| |
| if dtype == torch.bfloat16: |
| # compare with the actual ground truth for |
| # bfloat16 kernels instead of eager mode |
| # implementation, since mismatch in cast |
| # adds excessive noise. |
| o = t(x.to(torch.float64), y.to(torch.float64)) |
| if o.dtype.is_floating_point: |
| o = o.to(torch.bfloat16) |
| else: |
| o = t(x, y) |
| |
| self.assertTrue(self._compare("failing case {}\n{}\n{}\n{}".format(dtype, operation, x, y), o, jit_o, 1e-2)) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_unary_ops(self): |
| data_types = [ |
| *self.int_types, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| # TODO: revert this |
| # see issue https://github.com/csarofeen/pytorch/issues/1730" |
| # torch.cfloat, |
| # torch.cdouble, |
| ] |
| if TEST_BF16: |
| data_types.append(torch.bfloat16) |
| operations = [torch.neg, |
| torch.abs, |
| torch.log, |
| torch.log10, |
| torch.log1p, |
| torch.log2, |
| torch.lgamma, |
| torch.exp, |
| torch.expm1, |
| torch.erf, |
| torch.erfc, |
| torch.cos, |
| torch.acos, |
| torch.cosh, |
| torch.sin, |
| torch.asin, |
| torch.sinh, |
| torch.tan, |
| torch.atan, |
| torch.sqrt, |
| torch.rsqrt, |
| torch.ceil, |
| torch.floor, |
| torch.round, |
| torch.trunc, |
| torch.frac, |
| torch.reciprocal, |
| torch.isfinite, |
| torch.isinf, |
| torch.isnan, |
| torch.isneginf, |
| torch.isposinf, |
| torch.isreal, |
| torch.nn.functional.softplus, |
| torch.nn.functional.gelu, |
| torch.relu, |
| torch.sigmoid, |
| torch.bitwise_not, |
| torch.tan, |
| torch.tanh, |
| torch.nn.functional.silu] |
| skip_complex = {torch.rsqrt, torch.reciprocal} |
| for op, dtype in itertools.product(operations, data_types): |
| if dtype.is_complex and op in skip_complex: |
| continue |
| self._unary_test_helper(op, dtype, False) # test special numbers |
| self._unary_test_helper(op, dtype, True) # test random data |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_category_rule(self): |
| def run_tensor(x, z): |
| def t(x: torch.Tensor, z: torch.Tensor): |
| o = x + z |
| o = torch.abs(o) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, z) |
| jit_o = t_jit(x, z) |
| o = t(x, z) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, z), FUSION_GUARD) |
| |
| def run_scalar(x, z): |
| def t(x: torch.Tensor, z: float): |
| o = x + z |
| o = torch.abs(o) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, z) |
| jit_o = t_jit(x, z) |
| o = t(x, z) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, z), FUSION_GUARD) |
| |
| # n-dim with 0-dim (no type-promote) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.tensor(2.0, dtype=torch.double, device="cuda") |
| run_tensor(x, z) |
| |
| # n-dim with 0-dim (type-promote) |
| x = torch.randn(4, 8, 32, 32, device="cuda").to(dtype=torch.long) |
| z = torch.tensor(2.0, dtype=torch.double, device="cuda") |
| run_tensor(x, z) |
| |
| # n-dim with n-dim (type-promote) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 8, 32, 32, dtype=torch.double, device="cuda") |
| run_tensor(x, z) |
| |
| # n-dim with scalar (no type-promote) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float16, device="cuda") |
| z = torch.tensor(3., dtype=torch.double) |
| run_scalar(x, z) |
| if TEST_BF16: |
| # n-dim with scalar (no type-promote) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.bfloat16, device="cuda") |
| z = torch.tensor(3., dtype=torch.double) |
| run_scalar(x, z) |
| |
| # n-dim with scalar (type-promote) |
| x = torch.randn(4, 8, 32, 32, device="cuda").to(dtype=torch.long) |
| z = torch.tensor(3., dtype=torch.double) |
| run_scalar(x, z) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_unary_bitwise(self): |
| def bit_not(x: torch.Tensor): |
| return ~(x + 1) |
| |
| jitted = torch.jit.script(bit_not) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(torch.long) |
| jit_o = jitted(x) |
| jit_o = jitted(x) |
| o = bit_not(x) |
| self.assertEqual(o, jit_o) |
| jitted.graph_for(x) # Shows up in second instance, not first |
| self.assertGraphContains(jitted.graph_for(x), FUSION_GUARD) |
| |
| def bool_not(x: torch.Tensor, y: torch.Tensor): |
| return ~(x & y) |
| |
| jitted = torch.jit.script(bool_not) |
| x = torch.rand(4, 8, 32, 32, dtype=torch.float, device="cuda").round().to(torch.bool) |
| y = torch.rand(4, 8, 32, 32, dtype=torch.float, device="cuda").round().to(torch.bool) |
| jit_o = jitted(x, y) |
| jit_o = jitted(x, y) |
| o = bool_not(x, y) |
| self.assertEqual(o, jit_o) |
| jitted.graph_for(x, y) # Shows up in second instance, not first |
| self.assertGraphContains(jitted.graph_for(x, y), FUSION_GUARD) |
| |
| def _get_scalar_binary_test_fn(self, category_and_type1, category_and_type2, operation): |
| category1, dtype_arg1 = category_and_type1 |
| category2, dtype_arg2 = category_and_type2 |
| |
| def t_intx_tensory(x: int, y: torch.Tensor): |
| o = operation(x, y) |
| o = 2 + o |
| return o |
| |
| def t_doublex_tensory(x: float, y: torch.Tensor): |
| o = operation(x, y) |
| o = 2 + o |
| return o |
| |
| def t_cdoublex_tensory(x: complex, y: torch.Tensor): |
| o = operation(x, y) |
| o = 2 + o |
| return o |
| |
| # Omit both scalar cases and swap cases |
| assert category1 == "scalar" and category2 != "scalar" |
| if dtype_arg1.is_floating_point: |
| return t_doublex_tensory |
| if dtype_arg1 == torch.int64 or dtype_arg1 == torch.int32: |
| return t_intx_tensory |
| if dtype_arg1.is_complex or dtype_arg1 == torch.int32: |
| return t_cdoublex_tensory |
| raise NotImplementedError |
| |
| def _binary_test_helper(self, operation, dtypes, random_data, categories="ndim"): |
| if isinstance(dtypes, tuple): |
| dtype_arg1, dtype_arg2 = dtypes |
| else: |
| dtype_arg1 = dtype_arg2 = dtypes |
| |
| if isinstance(categories, tuple) and random_data: |
| category1, category2 = categories |
| elif not random_data: |
| category1 = category2 = "ndim" |
| else: |
| category1 = category2 = categories |
| |
| def is_cpu_category(x): |
| return x == "0dimcpu" or x == "scalar" |
| |
| # skip unsupported cases |
| if is_cpu_category(category1) and is_cpu_category(category2): |
| return |
| |
| # only test cases with first operand as scalar |
| if category2 == "scalar": |
| return |
| |
| # skip ops that doesn't support scalar inputs in eager |
| if operation in [ |
| torch.atan2, |
| torch.max, |
| torch.min, |
| torch.remainder, # unsupported in nvfuser |
| ]: |
| if category1 == "scalar" or category2 == "scalar": |
| return |
| |
| if operation in [ |
| torch.fmod, |
| torch.eq, |
| torch.ne, |
| torch.ge, |
| torch.gt, |
| torch.le, |
| torch.lt |
| ]: |
| if category1 == "scalar": |
| return |
| |
| # operators that does not support bfloat16 |
| if operation in [torch.fmod]: |
| if dtype_arg1 == torch.bfloat16 or dtype_arg2 == torch.bfloat16: |
| return |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = operation(x, y) |
| o = o + z |
| return o |
| |
| shape = (4, 32, 32) |
| |
| shapex = shape if category1 == "ndim" else () |
| shapey = shape if category2 == "ndim" else () |
| |
| if random_data: |
| x = (torch.randn(shapex, dtype=torch.float, device="cuda") * 5).to(dtype_arg1) |
| y = (torch.randn(shapey, dtype=torch.float, device="cuda") * 5).to(dtype_arg2) |
| else: |
| x = self.special_values.to(dtype=dtype_arg1) |
| y = (torch.rand_like(self.special_values) * 5).to(dtype_arg2) |
| |
| r""" |
| Category conversion |
| """ |
| has_scalar = False |
| if category1 == "scalar": |
| has_scalar = True |
| x = x.item() |
| |
| if category1 == "0dimcpu": |
| x = x.to(device="cpu") |
| |
| if category2 == "scalar": |
| has_scalar = True |
| y = y.item() |
| |
| if category2 == "0dimcpu": |
| y = y.to(device="cpu") |
| |
| z = torch.tensor([2], device="cuda").to(dtype_arg1) |
| is_dtype_arg1_int = dtype_arg1 == torch.int32 or dtype_arg1 == torch.int64 |
| is_dtype_arg2_int = dtype_arg2 == torch.int32 or dtype_arg2 == torch.int64 |
| |
| if operation in [torch.pow]: |
| if is_dtype_arg1_int and is_dtype_arg2_int: |
| if category2 == "scalar": |
| # RuntimeError: Integers to negative integer powers are not allowed |
| y = abs(y) |
| if category2 == "0dimcpu" and y == -1: |
| # https://github.com/pytorch/pytorch/issues/73196 |
| y = y - 1 |
| if category2 == "0dimcpu" and y == -2: |
| # avoid pow(0, -2), which gives inconsistent results on integer tensor |
| y = y - 1 |
| |
| # Avoid division by zero for integer tensors |
| div_like = [torch.div, torch.fmod, torch.remainder] |
| if operation in div_like and (dtype_arg2 == torch.int32 or dtype_arg2 == torch.int64): |
| y[y == 0] = 1 |
| |
| test_value = True |
| if dtype_arg1 == torch.half or dtype_arg2 == torch.half: |
| test_value = False |
| if dtype_arg1 == torch.bfloat16 or dtype_arg2 == torch.bfloat16: |
| test_value = False |
| |
| try: |
| if not has_scalar: |
| o = t(x, y, z) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| if test_value: |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| elif category2 != "scalar": # only test the case where first is scalar |
| test_fn = self._get_scalar_binary_test_fn((category1, dtype_arg1), (category2, dtype_arg2), operation) |
| o = test_fn(x, y) |
| t_jit = torch.jit.script(test_fn) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| if test_value: |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| except Exception as e: |
| print("failing test for op: ", operation.__name__) |
| print("with input\n\tx: ", x) |
| print("\ty: ", y) |
| print("\tz: ", z) |
| raise e |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_binary_ops(self): |
| data_types = [ |
| torch.int32, |
| torch.int64, |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| ] |
| if TEST_BF16: |
| data_types.append(torch.bfloat16) |
| operations = [torch.mul, |
| torch.div, |
| torch.atan2, |
| torch.max, |
| torch.min, |
| torch.pow, |
| torch.remainder, |
| torch.fmod, |
| torch.eq, |
| torch.ne, |
| torch.ge, |
| torch.gt, |
| torch.le, |
| torch.lt] |
| |
| category_types = [ |
| "scalar", |
| "0dim", |
| "0dimcpu", |
| "ndim" |
| ] |
| |
| binary_dtype_combinations = list(itertools.combinations(data_types, 2)) |
| category_combinations = list(itertools.combinations(category_types, 2)) |
| |
| for op, dtypes, categories in itertools.product(operations, binary_dtype_combinations, category_combinations): |
| self._binary_test_helper(op, dtypes, True, categories) # random data |
| |
| for op, dtypes in itertools.product(operations, binary_dtype_combinations): |
| self._binary_test_helper(op, dtypes, False) # special numbers |
| |
| # TODO: revert this |
| @unittest.skipIf(True, "see issue https://github.com/csarofeen/pytorch/issues/1730") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_binary_ops_complex(self): |
| data_types = [torch.cfloat, torch.cdouble] |
| operations = [torch.mul, torch.div, torch.pow, torch.eq, torch.ne] |
| |
| category_types = [ |
| "scalar", |
| "0dim", |
| "0dimcpu", |
| "ndim" |
| ] |
| |
| binary_dtype_combinations = list(itertools.combinations(data_types, 2)) |
| category_combinations = list(itertools.combinations(category_types, 2)) |
| |
| for op, dtypes, categories in itertools.product(operations, binary_dtype_combinations, category_combinations): |
| self._binary_test_helper(op, dtypes, True, categories) # random data |
| |
| for op, dtypes in itertools.product(operations, binary_dtype_combinations): |
| self._binary_test_helper(op, dtypes, False) # special numbers |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_binary_bitwise(self): |
| dtypes = [torch.bool, torch.int32, torch.int64] |
| |
| for dtype1, dtype2, dtype3 in itertools.product(dtypes, repeat=3): |
| def jit_and(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| return torch.bitwise_and(x, y) & z |
| |
| def jit_or(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| return torch.bitwise_or(x, y) | z |
| |
| def jit_xor(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| return torch.bitwise_xor(x, y) ^ z |
| |
| def jit_lshift(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| return torch.bitwise_left_shift(x, y) << z |
| |
| def jit_rshift(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| return torch.bitwise_right_shift(x, y) >> z |
| |
| for jit_func in [jit_and, jit_or, jit_xor, jit_lshift, jit_rshift]: |
| if torch.bool in {dtype1, dtype2, dtype3} and jit_func in {jit_lshift, jit_rshift}: |
| continue |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(dtype1) |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(dtype2) |
| z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(2).to(dtype3) |
| |
| jitted = torch.jit.script(jit_func) |
| jit_o = jitted(x, y, z) |
| jit_o = jitted(x, y, z) |
| o = jit_func(x, y, z) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(jitted.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_type_as_op(self): |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = torch.lt(x, z) |
| o = o.type_as(y) |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 0.5) |
| jit_o = t_jit(x, y, 0.5) |
| o = t(x, y, 0.5) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 0.5), FUSION_GUARD) |
| |
| def _ternary_integer_test_helper(self, dtype_arg1): |
| shape = (4, 8, 32, 32) |
| magnitude = 100 |
| if (dtype_arg1 in self.int_types): |
| x = torch.randint(-magnitude, magnitude, shape, dtype=dtype_arg1, device="cuda") |
| else: |
| x = torch.randn(shape, dtype=dtype_arg1, device="cuda") * magnitude |
| arg2 = int(0) |
| arg3 = int(magnitude * 0.1) |
| |
| def clamp0(x: torch.Tensor, f: int): |
| o = 2. * torch.clamp(x, min=f) |
| return o |
| clamp0_jit = torch.jit.script(clamp0) |
| self._run_helper(clamp0_jit, clamp0, x, arg2) |
| |
| def clamp1(x: torch.Tensor, f: int, ff: int): |
| o = 2. * torch.clamp(x, min=f, max=ff) |
| return o |
| clamp1_jit = torch.jit.script(clamp1) |
| self._run_helper(clamp1_jit, clamp1, x, arg2, arg3) |
| |
| def clamp2(x: torch.Tensor, f: float, ff: int): |
| o = 2. * torch.clamp(x, min=f, max=ff) |
| return o |
| clamp2_jit = torch.jit.script(clamp2) |
| self._run_helper(clamp2_jit, clamp2, x, float(arg2), arg3) |
| |
| def clamp3(x: torch.Tensor, f: int, ff: float): |
| o = 2. * torch.clamp(x, min=f, max=ff) |
| return o |
| clamp3_jit = torch.jit.script(clamp3) |
| self._run_helper(clamp3_jit, clamp3, x, arg2, float(arg3)) |
| |
| def threshold(x: torch.Tensor, th: int, val: int): |
| o = 2. * torch.threshold(x, th, val) |
| return o |
| threshold_jit = torch.jit.script(threshold) |
| self._run_helper(threshold_jit, threshold, x, arg2, arg3) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_ternary_ops_integer_compatibility(self): |
| data_types = [ |
| torch.float16, |
| torch.float32, |
| torch.float64 |
| ] |
| for dtype in data_types: |
| self._ternary_integer_test_helper(dtype) |
| |
| def _ternary_test_helper(self, operation, dtypes, random_data): |
| if isinstance(dtypes, tuple): |
| dtype_arg1, dtype_arg2, dtype_arg3 = dtypes |
| else: |
| dtype_arg1 = dtype_arg2 = dtype_arg3 = dtypes |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, alpha: torch.Tensor): |
| o = operation(x, y, z) |
| o = o + alpha |
| return o |
| |
| shape = (4, 32, 32) |
| if operation is torch.where: |
| dtype_arg1 = torch.bool |
| if random_data: |
| x = torch.randint(0, 2, shape).to(dtype=torch.bool, device="cuda") |
| y = (torch.randn(shape, dtype=torch.float, device="cuda") * 5).to(dtype_arg2) |
| z = (torch.randn(shape, dtype=torch.float, device="cuda") * 5).to(dtype_arg3) |
| else: |
| x = torch.randint(0, 2, self.special_values.size()).to(dtype=torch.bool, device="cuda") |
| y = self.special_values.to(dtype=dtype_arg2) |
| z = (torch.rand_like(self.special_values) * 5).to(dtype_arg3) |
| elif random_data: |
| x = (torch.randn(shape, dtype=torch.float, device="cuda") * 5).to(dtype_arg1) |
| y = (torch.randn(shape, dtype=torch.float, device="cuda") * 5).to(dtype_arg2) |
| z = (torch.randn(shape, dtype=torch.float, device="cuda") * 5).to(dtype_arg3) |
| else: |
| x = self.special_values.to(dtype=dtype_arg1) |
| y = (torch.rand_like(self.special_values) * 5).to(dtype_arg2) |
| z = (torch.rand_like(self.special_values) * 5).to(dtype_arg3) |
| alpha = torch.tensor([2], device="cuda").to(dtype_arg1) |
| |
| o = t(x, y, z, alpha) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, z, alpha) |
| jit_o = t_jit(x, y, z, alpha) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_ternary_ops_type_promotion(self): |
| # TODO: update accuracy tolerance for bf16 / fp16 data types |
| data_types = [ |
| # torch.float16, |
| torch.float32, |
| torch.float64 |
| ] |
| ''' |
| if TEST_BF16: |
| data_types.append(torch.bfloat16) |
| ''' |
| # TODO: Add Tensor support for clamp |
| operations = [torch.clamp] |
| ternary_dtype_combinations = itertools.combinations(data_types, 3) |
| for op, dtypes in itertools.product(operations, ternary_dtype_combinations): |
| self._ternary_test_helper(op, dtypes, True) # random data |
| self._ternary_test_helper(op, dtypes, False) # special numbers |
| |
| # We can't test the scalar version of rsub from python |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") |
| def test_rsub(self): |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| |
| def rsub(x: torch.Tensor, y: torch.Tensor): |
| o = torch.rsub(x, y) |
| o = o * 2. |
| return o |
| |
| rsub_jit = torch.jit.script(rsub) |
| self._run_helper(rsub_jit, rsub, x, y) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| # legacy fuser does not work for rand_like, see issue #34361 |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") |
| def test_ternary_ops(self): |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| cond = torch.randint(0, 2, (4, 8, 32, 32)).to(dtype=torch.bool, device="cuda") |
| |
| def add(x: torch.Tensor, other: torch.Tensor, alpha: float): |
| o = torch.relu(x) |
| o = torch.add(o, other=other, alpha=alpha) |
| return o |
| add_jit = torch.jit.script(add) |
| self._run_helper(add_jit, add, x, y, 2.0) |
| |
| def clamp0(x: torch.Tensor, f: float): |
| o = 2. * torch.clamp(x, min=f) |
| return o |
| clamp0_jit = torch.jit.script(clamp0) |
| self._run_helper(clamp0_jit, clamp0, x, 0.5) |
| |
| def clamp1(x: torch.Tensor, f: float, ff: float): |
| o = 2. * torch.clamp(x, min=f, max=ff) |
| return o |
| clamp1_jit = torch.jit.script(clamp1) |
| self._run_helper(clamp1_jit, clamp1, x, -0.2, 0.7) |
| |
| def threshold(x: torch.Tensor, th: float, val: float): |
| o = 2. * torch.threshold(x, th, val) |
| return o |
| threshold_jit = torch.jit.script(threshold) |
| self._run_helper(threshold_jit, threshold, x, 0.2, 0.9) |
| |
| def where(x: torch.Tensor, y: torch.Tensor, cond: torch.Tensor): |
| o = 2. * torch.where(cond, x, y) |
| return o |
| where_jit = torch.jit.script(where) |
| self._run_helper(where_jit, where, x, y, cond) |
| |
| def lerp(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = 2. * torch.lerp(x, y, z) |
| return o |
| lerp_jit = torch.jit.script(lerp) |
| self._run_helper(lerp_jit, lerp, x, y, z) |
| |
| def lerp_scale(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = 2. * torch.lerp(x, y, z) |
| return o |
| lerp_scale_jit = torch.jit.script(lerp_scale) |
| self._run_helper(lerp_scale_jit, lerp_scale, x, y, 0.5) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires profiling node to run cuda fuser") |
| def test_addcmul_ops(self): |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| |
| def addcmul(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, value: float): |
| o = torch.add(x, 0.5) |
| o = torch.addcmul(o, y, z, value=value) |
| return o |
| addcmul_jit = torch.jit.script(addcmul) |
| self._run_helper(addcmul_jit, addcmul, x, y, z, 2.0) |
| |
| def addcmul_no_alpha(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = torch.add(x, 0.5) |
| o = torch.addcmul(o, y, z) |
| return o |
| addcmul_no_alpha_jit = torch.jit.script(addcmul_no_alpha) |
| self._run_helper(addcmul_no_alpha_jit, addcmul_no_alpha, x, y, z) |
| |
| def addcmul_const_alpha(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = torch.add(x, 0.5) |
| o = torch.addcmul(o, y, z, value=0.75) |
| return o |
| addcmul_const_alpha_jit = torch.jit.script(addcmul_const_alpha) |
| self._run_helper(addcmul_const_alpha_jit, addcmul_const_alpha, x, y, z) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dynamic_size(self): |
| old_guard = torch._C._jit_set_nvfuser_guard_mode(True) |
| torch._C._jit_set_bailout_depth(20) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: float): |
| o = x + y |
| o = o + z |
| return o |
| t_jit = torch.jit.script(t) |
| x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda") |
| y = torch.randn(32, 32, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0)) |
| self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False) |
| |
| # this test is not ideal, as we rely on the bailout to test it and we |
| # don't know a way to verify the bailout graph to validate the proper |
| # fusion. |
| x = torch.randn(8, 32, 16, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(16, 8, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD) |
| x = torch.randn(8, 17, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(8, 17, 1, dtype=torch.float, device="cuda") |
| jit_o = t_jit(x, y, 2.0) |
| jit_o = t_jit(x, y, 2.0) |
| o = t(x, y, 2.0) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD) |
| torch._C._jit_set_nvfuser_guard_mode(old_guard) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_random_topo(self): |
| os.environ["PYTORCH_NVFUSER_DISABLE_FALLBACK"] = "1" |
| self.assertTrue(runDefaultTestWithSeed(28449)) |
| |
| def _compare(self, desc, inp1, inp2, error): |
| a = inp1.clone() |
| b = inp2.clone() |
| close = torch.allclose(a, b, rtol=error, atol=error, equal_nan=True) |
| if not close: |
| print(desc, close) |
| z = a - b |
| index = (torch.abs(z) >= error + error * torch.abs(b)).nonzero() |
| print("dif : ", z[index]) |
| print("inp1 : ", a[index]) |
| print("inp2 : ", b[index]) |
| print("maximum difference", z[index].max()) |
| return close |
| |
| # Permutation helper that applies binary operation between two tensors: |
| # 1. applies separate permutation `perm0` & `perm1` to two inputs |
| # 2. reduce dimension `broadcast_axis` of operand two to size 1 |
| # The purpose of this test is to ensure permutation works well in |
| # complicated cases with arbitrary stride order and broadcasting dimensions |
| def _permutation_helper(self, sizes, broadcast_axis, dtype, device, perm0, perm1): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.relu(o) |
| return o |
| |
| x = torch.randn([sizes[i] for i in perm0], dtype=dtype, device=device).permute( |
| [perm0.index(i) for i in range(len(sizes))]) |
| if broadcast_axis >= 0: |
| sizes[broadcast_axis] = 1 |
| y = torch.randn([sizes[i] for i in perm1], dtype=dtype, device=device).permute( |
| [perm1.index(i) for i in range(len(sizes))]) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertEqual(o.stride(), jit_o.stride()) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| |
| # end-2-end test of permutation & contiguity handling in integration. |
| # we are testing inputs with all combination of permutation order, just to |
| # ensure that integration would be able to generate functionally correct |
| # kernels |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_binary_ops_permutation(self): |
| # note that num_dim is exclusive from len(x), so we are not reducing |
| # to single element (codegen limitation at this moment) |
| x = [7, 8, 12] |
| b_axes = range(-1, len(x)) |
| for b_axis in b_axes: |
| for perm0 in itertools.permutations(range(len(x))): |
| for perm1 in itertools.permutations(range(len(x))): |
| x = [7, 8, 12] |
| self._permutation_helper(x, b_axis, torch.float32, "cuda", perm0, perm1) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_binary_ops_channels_last_with_bcast(self): |
| device = "cuda" |
| x = torch.randn([4, 3, 2, 5], device=device).to(memory_format=torch.channels_last) |
| w = torch.randn([2, 5], device=device) |
| |
| def t(x: torch.Tensor, b: torch.Tensor): |
| o = x + b |
| return torch.relu(o) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, w) |
| jit_o = t_jit(x, w) |
| jit_o = t_jit(x, w) |
| o = t(x, w) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4)) |
| self.assertGraphContains(t_jit.graph_for(x, w), FUSION_GUARD) |
| |
| def _reduction_helper(self, sizes, reduction_axis, dtype, device, perm0, perm1, keepdim=False): |
| class MyReduction(torch.nn.Module): |
| __constants__ = ['reduction_axis', 'keepdim'] |
| |
| def __init__(self): |
| super(MyReduction, self).__init__() |
| self.reduction_axis = reduction_axis |
| self.keepdim = keepdim |
| |
| def forward(self, x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.sum(o, dim=self.reduction_axis, keepdim=self.keepdim) |
| return o |
| |
| t = MyReduction() |
| |
| x = torch.randn([sizes[i] for i in perm0], dtype=dtype, device=device).permute( |
| [perm0.index(i) for i in range(len(sizes))]) |
| y = torch.randn([sizes[i] for i in perm1], dtype=dtype, device=device).permute( |
| [perm1.index(i) for i in range(len(sizes))]) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| # numerical issues here due to our scheduling. |
| # can't use `self.assertEqual(o, jit_o)` |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4)) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_reduction(self): |
| for x in ([7, 8, 12], [12, 8, 7, 9, 15], [128, 16, 8, 32]): |
| # note that num_dim is exclusive from len(x), so we are not reducing |
| # to single element (codegen limitation at this moment) |
| for num_reduce_dim in range(1, len(x)): |
| for axes in itertools.combinations(range(len(x)), num_reduce_dim): |
| for keepdim in (True, False): |
| perm0 = range(len(x)) |
| perm1 = range(len(x)) |
| self._reduction_helper(x, axes, torch.float32, "cuda", perm0, perm1, keepdim) |
| |
| def _layer_norm_autodiff_helper(self, model, grad, shapes, args): |
| jit_model = torch.jit.script(model) |
| |
| eps = np.random.random() * 1e-4 |
| use_cudnn = bool(np.random.randint(0, 2)) |
| |
| # profile/optimization runs |
| for i in range(3): |
| jit_o = jit_model(shapes, *args, eps, use_cudnn) |
| jit_o.backward(grad) |
| |
| ref_args = [t.detach().clone().requires_grad_() for t in args] |
| [t.grad.zero_() for t in args] |
| jit_o = jit_model(shapes, *args, eps, use_cudnn) |
| jit_o.backward(grad) |
| |
| o = model(shapes, *ref_args, eps, use_cudnn) |
| o.backward(grad) |
| self.assertEqual(jit_o, o) |
| for arg, ref_arg in zip(args, ref_args): |
| self.assertEqual(arg.grad, ref_arg.grad) |
| |
| # check fusion in fw & bw |
| g = jit_model.graph_for(shapes, *args, eps, use_cudnn) |
| for node in g.nodes(): |
| n = node |
| dbg_state = jit_model.get_debug_state() |
| for val in dbg_state.execution_plans.values(): |
| v = val |
| state2 = v.code.grad_executor_states() |
| for val in state2[0].execution_plans.values(): |
| v2 = val |
| FileCheck().check(FUSION_GUARD).run(g) |
| FileCheck().check(FUSION_GUARD).run(v2.graph) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_layer_norm_autodiff(self): |
| def t_wb(shapes: List[int], x, w, b, eps: float, cudnn: bool): |
| o = torch.layer_norm(x, shapes, w, b, eps, cudnn) |
| o = torch.relu(o) |
| return o |
| |
| def t_w(shapes: List[int], x, w, eps: float, cudnn: bool): |
| o = torch.layer_norm(x, shapes, w, None, eps, cudnn) |
| o = torch.relu(o) |
| return o |
| |
| def t_b(shapes: List[int], x, b, eps: float, cudnn: bool): |
| o = torch.layer_norm(x, shapes, None, b, eps, cudnn) |
| o = torch.relu(o) |
| return o |
| |
| def t(shapes: List[int], x, eps: float, cudnn: bool): |
| o = torch.layer_norm(x, shapes, None, None, eps, cudnn) |
| o = torch.relu(o) |
| return o |
| |
| model = {3: t_wb, 2: t_w, 1: t_b, 0: t} |
| |
| for w, b in itertools.product([True, False], repeat=2): |
| batch = [2] |
| # note: awkward shape here to avoid vectorized fast kernel, which is |
| # buggy in aten |
| shapes = [2, 7, 3] |
| m = model[w * 2 + b] |
| |
| grad = torch.randn(batch + shapes, dtype=torch.float32, device="cuda") |
| args = [torch.randn(batch + shapes, dtype=torch.float32, device="cuda").requires_grad_()] |
| if w: |
| args.append(torch.randn(shapes, dtype=torch.float32, device="cuda").requires_grad_()) |
| if b: |
| args.append(torch.randn(shapes, dtype=torch.float32, device="cuda").requires_grad_()) |
| self._layer_norm_autodiff_helper(m, grad, shapes, args) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_layer_norm_parser(self): |
| dtype = torch.float32 |
| device = "cuda" |
| x = torch.randn([4, 4, 2], dtype=dtype, device=device) |
| w = torch.randn([4, 2], dtype=dtype, device=device) |
| b = torch.randn([4, 2], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, w: torch.Tensor, b: torch.Tensor): |
| o = torch.relu(x) |
| o = torch.layer_norm(o, [4, 2], w, b, 1e-5) |
| return o |
| |
| o = t(x, w, b) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, w, b) |
| jit_o = t_jit(x, w, b) |
| o = t(x, w, b) |
| self.assertGraphContains(t_jit.graph_for(x, w, b), FUSION_GUARD) |
| |
| def _native_layer_norm_helper(self, shape, norm_shape, dtype, device, error, affine=True): |
| class MyLayerNorm(torch.nn.Module): |
| __constants__ = ['norm_shape'] |
| |
| def __init__(self, elementwise_affine=True): |
| super(MyLayerNorm, self).__init__() |
| self.norm_shape = norm_shape |
| if elementwise_affine: |
| self.weight = torch.randn(norm_shape, dtype=dtype, device=device) |
| self.bias = torch.randn(norm_shape, dtype=dtype, device=device) |
| with torch.no_grad(): |
| self.weight.fill_(1) |
| self.bias.fill_(0) |
| else: |
| self.weight = None |
| self.bias = None |
| |
| def forward(self, x: torch.Tensor): |
| o = torch.relu(x) |
| o = torch.native_layer_norm(o, self.norm_shape, self.weight, self.bias, 1e-5) |
| return o |
| |
| t = MyLayerNorm(affine) |
| |
| x = torch.randn(shape, dtype=dtype, device=device) |
| t_jit = torch.jit.script(t) |
| jit_o, jit_mean, jit_rstd = t_jit(x) |
| jit_o, jit_mean, jit_rstd = t_jit(x) |
| o, mean, rstd = t(x) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| # numerical issues here due to our scheduling. |
| # can't use `self.assertEqual(o, jit_o)` |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| self.assertTrue(self._compare("comparing mean failed", mean, jit_mean, error)) |
| self.assertTrue(self._compare("comparing rstd failed", rstd, jit_rstd, error)) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_native_layer_norm(self): |
| dims = 4 |
| rnds = 3 |
| for idx in range(rnds): |
| for offset in range(1, dims): |
| for affine in (True, False): |
| input_shape = [random.randint(10, 30) for idx in range(dims)] |
| norm_shape = [input_shape[idx] for idx in range(dims - offset, dims)] |
| self._native_layer_norm_helper(input_shape, norm_shape, torch.float32, "cuda", 1e-4, affine) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_native_layer_norm_half(self): |
| dims = 4 |
| rnds = 3 |
| for idx in range(rnds): |
| for offset in range(1, dims): |
| input_shape = [random.randint(10, 30) for idx in range(dims)] |
| norm_shape = [input_shape[idx] for idx in range(dims - offset, dims)] |
| self._native_layer_norm_helper(input_shape, norm_shape, torch.float16, "cuda", 5e-3) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_native_layer_norm_bfloat(self): |
| dims = 4 |
| rnds = 3 |
| for idx in range(rnds): |
| for offset in range(1, dims): |
| input_shape = [random.randint(10, 30) for idx in range(dims)] |
| norm_shape = [input_shape[idx] for idx in range(dims - offset, dims)] |
| self._native_layer_norm_helper(input_shape, norm_shape, torch.bfloat16, "cuda", 1e-1) |
| |
| def _norm_helper(self, |
| shape, |
| dtype, |
| device, |
| error, |
| is_batch_norm_else_instance_norm, |
| memory_format=torch.contiguous_format, |
| *, |
| layer_dtype=torch.float32): |
| class MyBatchNorm(torch.nn.Module): |
| def __init__(self): |
| super(MyBatchNorm, self).__init__() |
| |
| def forward(self, x: torch.Tensor, r_mean: torch.Tensor, r_var: torch.Tensor): |
| o = torch.nn.functional.batch_norm(x, r_mean, r_var, training=True) |
| o = torch.relu(o) |
| return o |
| |
| class MyInstanceNorm(torch.nn.Module): |
| def __init__(self): |
| super(MyInstanceNorm, self).__init__() |
| |
| def forward(self, x: torch.Tensor, r_mean: torch.Tensor, r_var: torch.Tensor): |
| o = torch.nn.functional.instance_norm(x, r_mean, r_var, use_input_stats=True) |
| o = torch.relu(o) |
| return o |
| |
| t = MyBatchNorm() if is_batch_norm_else_instance_norm else MyInstanceNorm() |
| |
| x = torch.randn(shape, dtype=dtype, device=device).to(memory_format=memory_format) |
| running_mean = torch.zeros(shape[1], dtype=layer_dtype, device=device) |
| running_var = torch.ones(shape[1], dtype=layer_dtype, device=device) |
| t_jit = torch.jit.script(t) |
| |
| eager_running_mean = running_mean.clone() |
| eager_running_var = running_var.clone() |
| jit_running_mean = running_mean.clone() |
| jit_running_var = running_var.clone() |
| |
| jit_o = t_jit(x, running_mean.clone(), running_var.clone()) |
| |
| self.assertTrue(self._compare("prerun comparing running_mean failed", eager_running_mean, jit_running_mean, error)) |
| self.assertTrue(self._compare("prerun comparing running_var failed", eager_running_var, jit_running_var, error)) |
| |
| jit_o = t_jit(x, jit_running_mean, jit_running_var) |
| o = t(x, eager_running_mean, eager_running_var) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.stride(), jit_o.stride()) |
| # numerical issues here due to our scheduling. |
| # can't use `self.assertEqual(o, jit_o)` |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| self.assertTrue(self._compare("comparing running_mean failed", eager_running_mean, jit_running_mean, error)) |
| self.assertTrue(self._compare("comparing running_var failed", eager_running_var, jit_running_var, error)) |
| self.assertGraphContains(t_jit.graph_for(x, running_mean, running_var), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_layer_norm_trivial_reduce_dim(self): |
| def t_wb(shapes: List[int], x, w, b, eps: float, cudnn: bool): |
| o = torch.layer_norm(x, shapes, w, b, eps, cudnn) |
| o = torch.relu(o) |
| return o |
| |
| batch = [1] |
| shapes = [2, 7, 3] |
| |
| grad = torch.randn(batch + shapes, dtype=torch.float32, device="cuda") |
| args = [torch.randn(batch + shapes, dtype=torch.float32, device="cuda").requires_grad_()] |
| args.append(torch.randn(shapes, dtype=torch.float32, device="cuda").requires_grad_()) |
| args.append(torch.randn(shapes, dtype=torch.float32, device="cuda").requires_grad_()) |
| self._layer_norm_autodiff_helper(t_wb, grad, shapes, args) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_norm_half_layer(self): |
| size = [2, 4, 2, 2] |
| |
| for is_batch_norm_else_instance_norm in [False, True]: |
| for mf in [torch.channels_last, torch.contiguous_format]: |
| self._norm_helper(size, torch.float16, "cuda", 1e-3, is_batch_norm_else_instance_norm, |
| memory_format=mf, layer_dtype=torch.float16) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_norm_channels_last(self): |
| size = [3, 4, 5, 6] |
| |
| with torch.backends.cudnn.flags(enabled=False): |
| for is_batch_norm_else_instance_norm in [False, True]: |
| for mf in [torch.channels_last, torch.contiguous_format]: |
| self._norm_helper(size, torch.float32, "cuda", 1e-4, is_batch_norm_else_instance_norm, memory_format=mf) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_norm(self): |
| output_elements = 10000 |
| channel_sizes = [67, 457, 1024, 4096] |
| |
| with torch.backends.cudnn.flags(enabled=False): |
| for is_batch_norm_else_instance_norm in [False, True]: |
| for dims in range(3, 6): |
| output_size = int(pow(output_elements, 1. / (dims - 1))) |
| for C in channel_sizes: |
| x = [output_size for idx in range(dims)] |
| x[1] = C |
| self._norm_helper(x, torch.float32, "cuda", 1e-4, is_batch_norm_else_instance_norm) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_norm_large(self): |
| output_elements = 262144 |
| channel_sizes = 67, 457, 1024 |
| |
| for is_batch_norm_else_instance_norm in [True, False]: |
| for dims in range(3, 6): |
| output_size = int(pow(output_elements, 1. / (dims - 1))) |
| for C in channel_sizes: |
| x = [output_size for idx in range(dims)] |
| x[1] = C |
| self._norm_helper(x, torch.float32, "cuda", 1e-4, is_batch_norm_else_instance_norm) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_norm_half(self): |
| output_elements = 10000 |
| channel_sizes = [67, 457, 1024, 4096] |
| |
| with torch.backends.cudnn.flags(enabled=False): |
| for is_batch_norm_else_instance_norm in [False, True]: |
| for dims in range(3, 6): |
| output_size = int(pow(output_elements, 1. / (dims - 1))) |
| for C in channel_sizes: |
| x = [output_size for idx in range(dims)] |
| x[1] = C |
| self._norm_helper(x, torch.float16, "cuda", 5e-3, is_batch_norm_else_instance_norm) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_norm_bfloat(self): |
| output_elements = 10000 |
| channel_sizes = [67, 457, 1024, 4096] |
| |
| with torch.backends.cudnn.flags(enabled=False): |
| for is_batch_norm_else_instance_norm in [False, True]: |
| for dims in range(3, 6): |
| output_size = int(pow(output_elements, 1. / (dims - 1))) |
| for C in channel_sizes: |
| x = [output_size for idx in range(dims)] |
| x[1] = C |
| self._norm_helper(x, torch.bfloat16, "cuda", 1e-1, is_batch_norm_else_instance_norm) |
| |
| def _softmax_helper(self, shape, reduction_axis, is_log_softmax, dtype, device, error): |
| class MySoftmax(torch.nn.Module): |
| __constants__ = ['reduction_axis'] |
| |
| def __init__(self): |
| super(MySoftmax, self).__init__() |
| self.reduction_axis = reduction_axis |
| |
| def forward(self, x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.nn.functional.softmax(o, dim=self.reduction_axis) |
| return o |
| |
| class MyLogSoftmax(torch.nn.Module): |
| __constants__ = ['reduction_axis'] |
| |
| def __init__(self): |
| super(MyLogSoftmax, self).__init__() |
| self.reduction_axis = reduction_axis |
| |
| def forward(self, x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.nn.functional.log_softmax(o, dim=self.reduction_axis) |
| return o |
| |
| gradient_check = (dtype == torch.float64) |
| t = MyLogSoftmax() if is_log_softmax else MySoftmax() |
| |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=gradient_check) |
| y = torch.randn(shape, dtype=dtype, device=device, requires_grad=gradient_check) |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| |
| if gradient_check: |
| gradcheck(t_jit.forward, [x, y], nondet_tol=1e-5) |
| else: |
| o = t(x, y) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| # numerical issues here due to our scheduling. |
| # can't use `self.assertEqual(o, jit_o)` |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_softmax_dtype(self): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.mul(x, y) |
| o = torch.nn.functional.softmax(o, dim=0, dtype=torch.float32) |
| return o |
| |
| x = torch.randn([4, 4], dtype=torch.float16, device="cuda").requires_grad_() |
| y = torch.randn_like(x).requires_grad_() |
| grad = torch.randn_like(x).float() |
| |
| ref_x = x.detach().requires_grad_() |
| ref_y = y.detach().requires_grad_() |
| o = t(ref_x, ref_y) |
| o.backward(grad) |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| x.grad.zero_() |
| y.grad.zero_() |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(ref_x.grad, x.grad) |
| self.assertEqual(ref_y.grad, y.grad) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GUARD).run(bwd_graph) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test__softmax_function(self): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.mul(x, y) |
| o = torch._softmax(o, dim=-1, half_to_float=False) |
| return o |
| |
| x = torch.randn([4, 4], dtype=torch.float16, device="cuda") |
| y = torch.randn_like(x) |
| |
| o = t(x, y) |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test__softmax_function_half_to_float(self): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.mul(x, y) |
| o = torch._softmax(o, dim=-1, half_to_float=True) |
| return o |
| |
| x = torch.randn([4, 4], dtype=torch.float16, device="cuda") |
| y = torch.randn_like(x) |
| |
| o = t(x, y) |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_softmax(self): |
| output_size = 10000 |
| dims = 4 |
| output_size = int(pow(output_size, 1. / dims)) |
| reduction_sizes = [67, 256, 1024, 4096] |
| |
| # gradient check |
| for reduction_dim in range(dims): |
| for is_log_softmax in [False, True]: |
| shape = [output_size for idx in range(dims)] |
| self._softmax_helper(shape, reduction_dim, is_log_softmax, torch.float64, "cuda", 1e-4) |
| |
| for reduction_dim in range(dims): |
| for reduction_size in reduction_sizes: |
| x = [output_size for idx in range(dims)] |
| x[reduction_dim] = reduction_size |
| for is_log_softmax in [False, True]: |
| self._softmax_helper(x, reduction_dim, is_log_softmax, torch.float32, "cuda", 1e-4) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_softmax_half(self): |
| output_size = 10000 |
| dims = 4 |
| output_size = int(pow(output_size, 1. / dims)) |
| reduction_sizes = [67, 256, 1024, 4096] |
| |
| for reduction_dim in range(dims): |
| for reduction_size in reduction_sizes: |
| x = [output_size for idx in range(dims)] |
| x[reduction_dim] = reduction_size |
| for is_log_softmax in [False, True]: |
| self._softmax_helper(x, reduction_dim, is_log_softmax, torch.float16, "cuda", 5e-3) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_softmax_bfloat(self): |
| output_size = 10000 |
| dims = 4 |
| output_size = int(pow(output_size, 1. / dims)) |
| reduction_sizes = [67, 256, 1024, 4096] |
| |
| for reduction_dim in range(dims): |
| for reduction_size in reduction_sizes: |
| x = [output_size for idx in range(dims)] |
| x[reduction_dim] = reduction_size |
| for is_log_softmax in [False, True]: |
| self._softmax_helper(x, reduction_dim, is_log_softmax, torch.bfloat16, "cuda", 1e-1) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_reduction_permutation(self): |
| x = [7, 8, 12] |
| # note that num_dim is exclusive from len(x), so we are not reducing |
| # to single element (codegen limitation at this moment) |
| for num_reduce_dim in range(1, len(x)): |
| for axes in itertools.combinations(range(len(x)), num_reduce_dim): |
| for perm0 in itertools.permutations(range(len(x))): |
| for perm1 in itertools.permutations(range(len(x))): |
| self._reduction_helper(x, axes, torch.float32, "cuda", perm0, perm1) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_reduction_multiple_output(self): |
| old_guard = torch._C._jit_set_nvfuser_guard_mode(True) |
| torch._C._jit_set_bailout_depth(20) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, scale: float, z: torch.Tensor): |
| o = torch.mul(x, y) |
| o = torch.mul(o, scale) |
| out1 = torch.mul(o, z) |
| out2 = torch.sum(out1, dim=[2]) |
| return out1, out2 |
| |
| t_jit = torch.jit.script(t) |
| x = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") |
| y = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") |
| z = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") |
| scale = 0.5 |
| jit_o = t_jit(x, y, scale, z) |
| jit_o = t_jit(x, y, scale, z) |
| o = t(x, y, scale, z) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, scale, z), FUSION_GUARD) |
| |
| x = x.to(memory_format=torch.channels_last) |
| y = y.to(memory_format=torch.channels_last) |
| z = z.to(memory_format=torch.channels_last) |
| jit_o = t_jit(x, y, scale, z) |
| jit_o = t_jit(x, y, scale, z) |
| o = t(x, y, scale, z) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, scale, z), FUSION_GUARD) |
| torch._C._jit_set_nvfuser_guard_mode(old_guard) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_channels_last_with_broadcast(self): |
| # setting this true forces a new graph to be generated with a new |
| # input a different broadcast shape |
| torch._C._jit_set_nvfuser_guard_mode(True) |
| |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.mul(x, y) |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t) |
| |
| # Single Channel broadcasts |
| # Test 1 |
| x = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") |
| x = x.to(memory_format=torch.channels_last) |
| |
| y = torch.randn(8, 4, 10, 1, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| |
| # Test 2 |
| y = torch.randn(8, 4, 1, 16, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| |
| # Test 3 |
| y = torch.randn(8, 1, 10, 16, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| |
| # Test 3 |
| y = torch.randn(1, 4, 10, 16, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| |
| ''' |
| Currently, the JIT doesn't have tensor merge logic to handle adding |
| a broadcast tensor with more than one broadcast into a non-broadcast |
| tensor. Therefore, either of these tests can fail depending on the |
| sort implementation. The second test is known to fail. |
| |
| # Two Channel broadcasts |
| # Test 1 |
| y = torch.randn(8, 4, 1, 1, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| |
| # Test 2 |
| y = torch.randn(8, 4, 1, 1, dtype=torch.float, device="cuda") |
| y = y.to(memory_format=torch.channels_last).transpose(2,3) |
| x = x.transpose(2,3) |
| |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), |
| jit_o.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual(o, jit_o) |
| ''' |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_pw_single_reduction_partition(self): |
| sizes = [2, 2, 2] |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(sizes, dtype=dtype, device=device) |
| y = torch.randn(sizes, dtype=dtype, device=device) |
| z = torch.randn(sizes, dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.sum(o, dim=[0]) |
| o = torch.add(o, z) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_permutation_preservation(self): |
| sizes = [2, 3, 4, 5] |
| dtype = torch.float |
| device = "cuda" |
| |
| with nvfuser_singleton_fusion(True): |
| |
| def t(x: torch.Tensor): |
| return torch.relu(x) |
| |
| t_jit = torch.jit.script(t) |
| x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| self._run_helper(t_jit, t, x, check_stride=True) |
| |
| def t(x: torch.Tensor, y: torch.Tensor): |
| return torch.add(x, y) |
| |
| t_jit = torch.jit.script(t) |
| x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| y = torch.randn(sizes[1:], dtype=dtype, device=device) |
| self._run_helper(t_jit, t, x, y, check_stride=True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_permutation_preservation_edge_case_0(self): |
| sizes = [2, 3, 4, 5] |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| # mismatch rank with *note* different permutation recognized by PE |
| bias = torch.randn(3, dtype=dtype, device=device).unsqueeze(-1).unsqueeze(-1) |
| |
| def t(x, y): |
| return x + y |
| |
| t_jit = torch.jit.script(t) |
| with nvfuser_singleton_fusion(True): |
| self._run_helper(t_jit, t, x, bias, check_stride=True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_permutation_preservation_edge_case_1_broken(self): |
| sizes = [2, 3, 4, 5] |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| # in-compatible permutation, this will cause format propagation to break |
| bias = torch.randn(4, 5, dtype=dtype, device=device) |
| |
| def t(x, y): |
| return x + y |
| |
| t_jit = torch.jit.script(t) |
| with nvfuser_singleton_fusion(True): |
| for _ in range(5): |
| jit_o = t_jit(x, bias) |
| |
| o = t(x, bias) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| try: |
| # nvfuser does not support in-compatible permutation, this will throw |
| self.assertEqual(o.stride(), jit_o.stride()) |
| except Exception as e: |
| warnings.warn( |
| "permutation propagation is broken, proper support should come after nvfuser permutation scheduler update") |
| self.assertGraphContains(t_jit.graph_for(x, bias), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_permutation_preservation_edge_case_2(self): |
| sizes = [2, 3, 4, 5] |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| y = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| z = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) |
| |
| def t(x, y, w): |
| tmp = torch.lerp(x, y, w) |
| tmp = torch.clamp(tmp, -1.0, 0.5) |
| tmp = torch.nn.functional.softplus(tmp) |
| return torch.threshold(tmp, -2.0, 0.5) |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y, z, check_stride=True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_normalization_partition(self): |
| sizes = [3, 8, 5] |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(sizes, dtype=dtype, device=device) |
| y = torch.randn(sizes, dtype=dtype, device=device) |
| z = torch.randn(sizes, dtype=dtype, device=device) |
| r_m = torch.randn(8, dtype=dtype, device=device) |
| r_v = torch.randn(8, dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, r_mean: torch.Tensor, r_var: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.nn.functional.softmax(o, dim=0) |
| o = torch.add(o, z) |
| o = torch.nn.functional.batch_norm(o, r_mean, r_var, training=True) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, z, r_m, r_v) |
| jit_o = t_jit(x, y, z, r_m, r_v) |
| o = t(x, y, z, r_m, r_v) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z, r_m, r_v), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_sum_to_one(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([4, 5, 6], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor): |
| o = torch.add(x, 1) |
| o = torch.sum(o, dim=[0, 1, 2]) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_single_reduction_broadcast(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([7, 4, 8], dtype=dtype, device=device) |
| y = torch.randn([4, 8], dtype=dtype, device=device) |
| z = torch.randn([1, 4, 8], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.add(o, z) |
| o = torch.sum(o, dim=[0]) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_trivial_reduction(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([1, 4, 8], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor): |
| o = torch.add(x, 1) |
| o = torch.sum(o, dim=[0]) |
| o = torch.sum(o, dim=[0]) |
| return o |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_profiling_node(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(4, 8, 8, 8, dtype=dtype, device=device) |
| |
| def repro(x: torch.Tensor, alpha: float): |
| o = torch.rand_like(x) |
| o = torch.add(o, alpha) |
| return o |
| repro_jit = torch.jit.script(repro) |
| self._run_helper(repro_jit, repro, x, 0.6) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_rand_like(self): |
| dtype = torch.float |
| device = "cuda" |
| |
| def t(x: torch.Tensor, alpha: float): |
| o = torch.rand_like(x) |
| o = torch.add(o, alpha) |
| return o |
| |
| # disabling cache so new inputs would generate new graph |
| t.__disable_jit_function_caching__ = True |
| |
| for m_format in [torch.contiguous_format, torch.channels_last]: |
| x = torch.randn(4, 5, 6, 7, dtype=dtype, device=device).to(memory_format=m_format) |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, 0.6, check_stride=True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_reduction_sizes_op(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn(2, 3, 4, 5, dtype=dtype, device=device) |
| y = torch.randn(2, 3, 4, 5, dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = x + y |
| o = torch.relu(o) |
| o = o.sum((1, 3)) |
| return o.size() |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o = t_jit(x, y) |
| o = t(x, y) |
| self.assertEqual(o, jit_o) |
| # since the output value is not used at all, the fusion operator should |
| # have been optimized away |
| self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_profile_ivalue(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([7, 4, 7], dtype=dtype, device=device) |
| y = torch.randn([7, 4, 7], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, dim: List[int], keepdim: bool): |
| o = torch.add(x, y) |
| o = o.sum(dim, keepdim=keepdim) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y, (0, 1), False) |
| jit_o = t_jit(x, y, (0, 1), False) |
| o = t(x, y, (0, 1), False) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertGraphContains(t_jit.graph_for(x, y, (0, 1), False), FUSION_GUARD) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_profile_ivalue_multiple_profiles(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([7, 4, 7], dtype=dtype, device=device) |
| |
| def t(x, num: int): |
| for i in range(num): |
| # varying reduction axes should break profile_ivalue |
| tmp = x.sum(i, keepdim=True) |
| # inplace add on input/output, can't be functionalized/fused |
| x += tmp |
| return x |
| |
| with nvfuser_singleton_fusion(True): |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, 3, num_fusion=0) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_sum_to_size(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([2, 4, 4], dtype=dtype, device=device) |
| y = torch.randn([2, 4, 4], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, y: torch.Tensor, new_size: List[int]): |
| o = torch.add(x, y) |
| o = o.sum_to_size(new_size) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y, (4, 1)) |
| |
| # update shape: old kernel should handle dynamic shape well without |
| # recompilation |
| x = torch.randn([2, 5, 8], dtype=dtype, device=device) |
| y = torch.randn([2, 5, 8], dtype=dtype, device=device) |
| # (TODO) check executed kernel, should extend autograd.profiler to fused |
| # kernels |
| self._run_helper(t_jit, t, x, y, (5, 1)) |
| |
| with nvfuser_singleton_fusion(True): |
| x = torch.randn([2, 5, 8], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor): |
| # no-op reduction |
| return x.sum_to_size((2, 5, 8)) |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_grad_sum_to_size(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([2, 4, 4], dtype=dtype, device=device).requires_grad_() |
| y = torch.randn([4], dtype=dtype, device=device).requires_grad_() |
| grad = torch.randn([2, 4, 4], dtype=dtype, device=device) |
| |
| ref_x = x.detach().clone().requires_grad_() |
| ref_y = y.detach().clone().requires_grad_() |
| |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.relu(o) |
| return o |
| |
| # profiling runs for forward & backward |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| |
| x.grad = None |
| y.grad = None |
| jit_o = t_jit(x, y) |
| jit_o.backward(grad) |
| o = t(ref_x, ref_y) |
| o.backward(grad) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertEqual(x.grad, ref_x.grad) |
| self.assertEqual(y.grad, ref_y.grad) |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GUARD).run(bwd_graph) |
| |
| # update shape: old kernel should handle dynamic shape well without |
| # recompilation |
| x = torch.randn([2, 5, 8], dtype=dtype, device=device).requires_grad_() |
| y = torch.randn([8], dtype=dtype, device=device).requires_grad_() |
| ref_x = x.detach().clone().requires_grad_() |
| ref_y = y.detach().clone().requires_grad_() |
| grad = torch.randn([2, 5, 8], dtype=dtype, device=device) |
| jit_o = t_jit(x, y) |
| # (TODO) check executed kernel, should extend autograd.profiler to fused |
| # kernels |
| jit_o.backward(grad) |
| o = t(ref_x, ref_y) |
| o.backward(grad) |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertEqual(o, jit_o) |
| self.assertEqual(x.grad, ref_x.grad) |
| self.assertEqual(y.grad, ref_y.grad) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dropout_inference_fusion(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([10, 4, 8], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.dropout(x, p, training=train) |
| o = o + 1.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| |
| self._run_helper(t_jit, t, x, 0.15, False) |
| |
| @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dropout_train_nograd_fusion(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([64, 128, 1024], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.dropout(x, p, training=train) |
| o = o + 1.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| |
| self._run_helper(t_jit, t, x, 0.0, True, check_runs=20) |
| self._run_helper(t_jit, t, x, 1.0, True, check_runs=20) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dropout_train_nograd_prob_check(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([1024, 1024], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.dropout(x, p, training=train) |
| o = o * 2.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| |
| for prob in [0.0, 0.15, 0.5, 0.85, 1.]: |
| torch.cuda.manual_seed_all(123) |
| jit_o = t_jit(x, prob, True) |
| torch.cuda.manual_seed_all(123) |
| jit_o = t_jit(x, prob, True) |
| |
| self.assertTrue(jit_o.detach().isfinite().all().item()) |
| |
| num_elems = x.numel() |
| num_zeros = num_elems - jit_o.detach().count_nonzero().item() |
| percent_zeros = num_zeros / num_elems |
| |
| self.assertTrue((percent_zeros >= (prob - 0.01)) and (percent_zeros <= (prob + 0.01))) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, prob, True), FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dropout_training_fusion(self): |
| dtype = torch.float |
| device = "cuda" |
| sizes = [2, 3, 4, 5] |
| |
| def t(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.dropout(x, p, training=train) |
| o = o * 2.0 |
| return o |
| |
| def t2(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.softmax(x, dim=-1) |
| o = torch.nn.functional.dropout(o, p, training=train) |
| return o |
| |
| # disabling cache so new inputs would generate new graph |
| t.__disable_jit_function_caching__ = True |
| t2.__disable_jit_function_caching__ = True |
| |
| for fn in [t, t2]: |
| for m_format in [torch.contiguous_format, torch.channels_last]: |
| fn_jit = torch.jit.script(fn) |
| x = torch.randn(sizes, dtype=dtype, device=device, requires_grad=True).to(memory_format=m_format) |
| grads = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=m_format) |
| |
| # The drop probability needs to be set to zero given that the order of picking random |
| # numbers between eager mode and the jit is different |
| self._run_training_helper(fn_jit, fn, grads, x, 0.0, True) |
| |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_gelu(self): |
| old_guard = torch._C._jit_set_nvfuser_guard_mode(True) |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([1024, 1024], dtype=dtype, device=device, requires_grad=True) |
| grads = torch.randn([1024, 1024], dtype=dtype, device=device, requires_grad=False) |
| |
| def t(x: torch.Tensor, mode: str): |
| o = torch.nn.functional.gelu(x, approximate=mode) |
| o = o * 2.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| self._run_training_helper(t_jit, t, grads, x, 'none') |
| self._run_training_helper(t_jit, t, grads, x, 'tanh') |
| torch._C._jit_set_nvfuser_guard_mode(old_guard) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_dropout_training_prob_check(self): |
| dtype = torch.float |
| device = "cuda" |
| x = torch.randn([1024, 1024], dtype=dtype, device=device, requires_grad=True) |
| x_nograd = torch.randn([1024, 1024], dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor, p: float, train: bool): |
| o = torch.nn.functional.dropout(x, p, training=train) |
| o = o * 2.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| |
| for prob in [0.0, 0.15, 0.5, 0.85, 1.]: |
| torch.cuda.manual_seed_all(123) |
| jit_o = t_jit(x, prob, True) |
| torch.cuda.manual_seed_all(123) |
| jit_o = t_jit(x, prob, True) |
| torch.cuda.manual_seed_all(123) |
| jit_o = t_jit(x, prob, True) |
| |
| self.assertTrue(jit_o.detach().isfinite().all().item()) |
| |
| num_elems = x.numel() |
| num_zeros = num_elems - jit_o.detach().count_nonzero().item() |
| percent_zeros = num_zeros / num_elems |
| |
| self.assertTrue((percent_zeros >= (prob - 0.01)) and (percent_zeros <= (prob + 0.01))) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, prob, True), FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_linear(self): |
| in_feature = 2 |
| out_feature = 8 |
| # Changing the input dims to be 3-D to avoid eager mode bias fusion |
| # The bias fusion causes some precision issues with TF-32 |
| weight = torch.randn(out_feature, in_feature, dtype=torch.float32, device='cuda') |
| bias = torch.randn(out_feature, dtype=torch.float32, device='cuda') |
| |
| def t(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor): |
| o = torch.nn.functional.linear(x, weight, bias) |
| o = torch.relu(o) |
| return o |
| |
| # disabling cache so new inputs would generate new graph |
| t.__disable_jit_function_caching__ = True |
| |
| sizes = [in_feature, ] |
| for i in range(4): |
| # increase input rank in each iteration |
| sizes.insert(0, i + 2) |
| x = torch.randn(*sizes, dtype=torch.float32, device='cuda') |
| t_jit = torch.jit.script(t) |
| # fusion only happens for input rank >= 4 |
| has_fusion = 0 if len(sizes) < 4 else 1 |
| self._run_helper(t_jit, t, x, weight, bias, check_stride=True, num_fusion=has_fusion) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_linear_symbolic_shapes(self): |
| def fn(x: int): |
| y = torch.zeros((3, 4, x, x + 2)).cuda() |
| for i in range(2): |
| inp = torch.rand((3, 4, x, x + i)).cuda() |
| weight = torch.rand((x + 2, x + i)).cuda() |
| bias = torch.rand((x, x + 2)).cuda() |
| y += torch.sin(torch.nn.functional.linear(inp, weight, bias)) |
| return y |
| |
| fn_s = torch.jit.script(fn) |
| fn_s(5) |
| fn_s(5) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_conv2d_symbolic_shapes(self): |
| def fn(x: int): |
| responses = [] |
| for i in range(2): |
| inp = torch.rand((3, 3, 32, 32)).cuda() |
| weight = torch.rand((x + i, 3, 7, 7)).cuda() |
| bias = torch.rand((x + i)).cuda() |
| res = torch.nn.functional.conv2d(inp, weight, bias, padding=3) |
| responses.append(res) |
| return responses |
| |
| fn_s = torch.jit.script(fn) |
| fn_s(5) |
| fn_s(5) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_backward_type(self): |
| # not super useful to check gradient of integer/bool, so skipping here |
| type_pairs = [ |
| (torch.float, torch.half), |
| (torch.double, torch.half), |
| (torch.float, torch.double), |
| ] |
| if TEST_BF16: |
| type_pairs += [ |
| (torch.float, torch.bfloat16), |
| (torch.double, torch.bfloat16), |
| ] |
| for x_type, y_type in type_pairs: |
| x = torch.randn(4, 2, dtype=x_type, device='cuda', requires_grad=True) |
| y = torch.randn(4, 2, dtype=y_type, device='cuda', requires_grad=True) |
| grad = torch.randn(4, 2, dtype=torch.float, device='cuda') |
| |
| def test1(x: torch.Tensor, y: torch.Tensor): |
| o = torch.add(x, y) |
| o = torch.add(o, y) |
| o = torch.add(o, y) |
| o = torch.add(o, y) |
| o = o + 1.0 |
| return o |
| |
| test1_jit = torch.jit.script(test1) |
| for i in range(3): |
| jit_o = test1_jit(x, y) |
| jit_o.backward(grad) |
| |
| bwd_graph = list( |
| list(test1_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| |
| FileCheck().check(FUSION_GROUP).run(bwd_graph) |
| self.assertEqual(x.grad.dtype, x.dtype) |
| self.assertEqual(y.grad.dtype, y.dtype) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_autocast_1(self): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = x * 2.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 3.0 |
| o = torch._C._nn.linear(o, y) |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.half, device='cuda', requires_grad=True) |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True) |
| grad = torch.randn(8, 4, dtype=torch.half, device='cuda', requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| with torch.cuda.amp.autocast(): |
| jit_o = t_jit(x, y) |
| if i == 2: |
| fwd_graph = t_jit.graph_for(x, y) |
| jit_o.backward(grad) |
| |
| self.assertGraphContainsExactly(fwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| with torch.cuda.amp.autocast(): |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GROUP).run(bwd_graph) |
| |
| self.assertEqual(jit_o.dtype, torch.half) |
| self.assertEqual(x.grad.dtype, x.dtype) |
| self.assertEqual(y.grad.dtype, y.dtype) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_autocast_2(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 3.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 4.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.half, device='cuda', requires_grad=True) |
| grad = torch.randn(8, 4, dtype=torch.float, device='cuda', requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| with torch.cuda.amp.autocast(): |
| jit_o = t_jit(x) |
| if i == 2: |
| fwd_graph = t_jit.graph_for(x) |
| jit_o.backward(grad) |
| |
| self.assertGraphContainsExactly(fwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| with torch.cuda.amp.autocast(): |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GROUP).run(bwd_graph) |
| |
| self.assertEqual(jit_o.dtype, torch.float) |
| self.assertEqual(x.grad.dtype, x.dtype) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_autocast_1_bfloat(self): |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o = x * 2.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 3.0 |
| o = torch._C._nn.linear(o, y) |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.bfloat16, device='cuda', requires_grad=True) |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True) |
| grad = torch.randn(8, 4, dtype=torch.bfloat16, device='cuda', requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
| jit_o = t_jit(x, y) |
| if i == 2: |
| fwd_graph = t_jit.graph_for(x, y) |
| jit_o.backward(grad) |
| |
| self.assertGraphContainsExactly(fwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GROUP).run(bwd_graph) |
| |
| self.assertEqual(jit_o.dtype, torch.bfloat16) |
| self.assertEqual(x.grad.dtype, x.dtype) |
| self.assertEqual(y.grad.dtype, y.dtype) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_autocast_2_bfloat(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 3.0 |
| o = torch.softmax(o, dim=-1) |
| o = o * 4.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.bfloat16, device='cuda', requires_grad=True) |
| grad = torch.randn(8, 4, dtype=torch.float, device='cuda', requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
| jit_o = t_jit(x) |
| if i == 2: |
| fwd_graph = t_jit.graph_for(x) |
| jit_o.backward(grad) |
| |
| self.assertGraphContainsExactly(fwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[ |
| 0].code.grad_executor_states()[0].execution_plans.values() |
| )[0].graph |
| FileCheck().check(FUSION_GROUP).run(bwd_graph) |
| |
| self.assertEqual(jit_o.dtype, torch.float) |
| self.assertEqual(x.grad.dtype, x.dtype) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_to_dtype_fp32_to_fp16(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.half) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.float, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.half) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_to_dtype_fp16_to_fp32(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.float) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.half, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.float) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_to_dtype_fp16_to_fp16(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.half) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.half, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.half) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_to_dtype_fp32_to_bf16(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.bfloat16) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.float, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.bfloat16) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_to_dtype_bf16_to_fp32(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.float) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.bfloat16, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.float) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") |
| def test_to_dtype_bf16_to_bf16(self): |
| def t(x: torch.Tensor): |
| o = x * 2.0 |
| o = o.to(dtype=torch.bfloat16) |
| o = o * 3.0 |
| return o |
| |
| x = torch.randn(8, 4, dtype=torch.bfloat16, device='cuda') |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| self.assertEqual(jit_o.dtype, torch.bfloat16) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(not TEST_MULTIGPU, "requires multiple CUDA device") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_multiple_device_pw(self): |
| |
| def t(x): |
| o = x + 1.0 |
| o = torch.relu(o) |
| return o |
| |
| x = torch.randn(2, dtype=torch.float32, device="cuda") |
| t_jit = torch.jit.script(t) |
| |
| for i in range(3): |
| jit_o = t_jit(x) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| torch.cuda.device(1) |
| x = x.to("cuda:1") |
| jit_o = t_jit(x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_graph_for_with_missing_optimized_engine(self): |
| x = torch.randn(8, 4, 2, dtype=torch.float, device="cuda").requires_grad_() |
| |
| def t(x: torch.Tensor, flag: bool): |
| x = x + 1.0 |
| x = torch.relu(x) |
| if flag: |
| o = x + 1.0 |
| o = torch.relu(o) |
| else: |
| o = x + 2.0 |
| o = torch.relu(o) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, False) |
| jit_o = t_jit(x, False) |
| jit_o = t_jit(x, True) |
| o = t(x, True) |
| self.assertEqual(o, jit_o) |
| # since the output value is not used at all, the fusion operator should |
| # have been optimized away |
| self.assertGraphContainsExactly(t_jit.graph_for(x, True), FUSION_GUARD, 1, True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_branches(self): |
| in_feature = 2 |
| out_feature = 4 |
| x = torch.randn(4, in_feature, dtype=torch.float32, device='cuda') |
| weight = torch.randn(out_feature, in_feature, dtype=torch.float32, device='cuda') |
| bias = torch.randn(out_feature, dtype=torch.float32, device='cuda') |
| |
| def t(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, flag: bool): |
| if flag: |
| o = torch.nn.functional.linear(x, weight, bias) |
| o = o + 1.0 |
| o = torch.relu(o) |
| else: |
| o = x.sum() |
| o = o + 2.0 |
| o = torch.relu(o) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x, weight, bias, True) |
| jit_o = t_jit(x, weight, bias, True) |
| o = t(x, weight, bias, True) |
| self.assertEqual(o, jit_o) |
| # since the output value is not used at all, the fusion operator should |
| # have been optimized away |
| self.assertGraphContainsExactly(t_jit.graph_for(x, weight, bias, True), FUSION_GUARD, 1) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_scalar_tensor(self): |
| x = torch.empty([], device="cuda", dtype=torch.float32) |
| |
| def t(x: torch.Tensor): |
| o = x + 1.0 |
| o = torch.nn.functional.relu(o) |
| return o |
| |
| # bias set to true. |
| t_jit = torch.jit.script(t) |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| self.assertEqual(o, jit_o) |
| # since the output value is not used at all, the fusion operator should |
| # have been optimized away |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1) |
| |
| @unittest.skipIf(os.environ.get('PYTORCH_NO_CUDA_MEMORY_CACHING') is not None, |
| "skipping graph_rng when caching allocator is disabled") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(CUDA_MAJOR < 11, "requires CUDA11 or above") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_graph_rng(self): |
| self.assertTrue(torch._C._jit_nvfuser_enabled()) |
| size = 10000 |
| a = torch.randn((size,), device="cuda", dtype=torch.float) |
| |
| def t(x): |
| o = x + 1.0 |
| o = torch.nn.functional.dropout(o, p=0.1) |
| o = o + 1.0 |
| o = torch.nn.functional.dropout(o, p=0.1) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| |
| for _ in range(3): |
| t_jit(a) |
| |
| self.assertGraphContainsExactly(t_jit.graph_for(a), FUSION_GUARD, 1) |
| |
| # Control (jitted, ungraphed) |
| torch.cuda.manual_seed(5) |
| eager_out = a.clone() |
| for _ in range(3): |
| eager_out = t_jit(eager_out) |
| |
| graph_in = a.clone() |
| g = torch.cuda.CUDAGraph() |
| s = torch.cuda.Stream() |
| s.wait_stream(torch.cuda.current_stream()) |
| with torch.cuda.stream(s): |
| torch.cuda.manual_seed(5) |
| g.capture_begin() |
| graph_out = t_jit(graph_in) |
| g.capture_end() |
| torch.cuda.current_stream().wait_stream(s) |
| # g is now a jitted, graphed version of t. |
| |
| # Runs a (jitted, graphed) -> (jitted, ungraphed) -> (jitted, graphed) sequence. |
| # The ops in the overall sequence should be the same as Control. |
| g.replay() |
| # graph_out is now filled with g's result. Use it as ungraphed input. |
| out = t_jit(graph_out) |
| graph_in.copy_(out) |
| g.replay() |
| |
| # If replay() updated RNG state correctly, graph_out should now equal eager_out |
| self.assertEqual(graph_out, eager_out) |
| |
| def _test_batch_norm_impl_index_helper(self, batch, c, hw, affine=True, |
| track_running_stats=True, train=True, |
| dtype=torch.float32): |
| # enabling inlining to avoid counter increment in BN forward |
| torch._C._debug_set_autodiff_subgraph_inlining(True) |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self, num_features=10, affine=True, track_running_stats=True): |
| super(MyModule, self).__init__() |
| self.bn = torch.nn.BatchNorm2d(num_features, |
| 1e-5, |
| affine=affine, |
| track_running_stats=track_running_stats).to(dtype=dtype) |
| |
| def forward(self, x): |
| o = self.bn(x) |
| o = o * 2.0 |
| return o |
| |
| x = torch.randn(batch, c, hw, hw, dtype=torch.float, device="cuda").to(dtype=dtype).requires_grad_() |
| grad = torch.randint(-20, 20, (batch, c, hw, hw), device="cuda").to(dtype=dtype).div(-10) |
| |
| my_module = MyModule(c, affine, track_running_stats).cuda() |
| ref_module = MyModule(c, affine, track_running_stats).cuda() |
| |
| if not train: |
| my_module.eval() |
| ref_module.eval() |
| |
| t_jit = torch.jit.script(my_module) |
| ref_module.load_state_dict(my_module.state_dict()) |
| |
| ref_x = x.detach().requires_grad_() |
| |
| for i in range(0, 3): |
| jit_o = t_jit(x) |
| jit_o.backward(grad) |
| |
| # TODO: remove this run? |
| o = ref_module(ref_x) |
| o.backward(grad) |
| |
| has_affine = ref_module.bn.weight is not None |
| has_running_stats = ref_module.bn.running_mean is not None |
| |
| if has_running_stats: |
| my_module.bn.running_mean.zero_() |
| my_module.bn.running_var.fill_(1.0) |
| ref_module.bn.running_mean.zero_() |
| ref_module.bn.running_var.fill_(1.0) |
| |
| # Verify that when train is False, we don't have grad for weight/bias. |
| if has_affine and train: |
| my_module.bn.weight.grad.zero_() |
| my_module.bn.bias.grad.zero_() |
| ref_module.bn.weight.grad.zero_() |
| ref_module.bn.bias.grad.zero_() |
| |
| x.grad.zero_() |
| ref_x.grad.zero_() |
| |
| # real runs |
| jit_o = t_jit(x) |
| jit_o.backward(grad) |
| |
| o = ref_module(ref_x) |
| o.backward(grad) |
| |
| # assert forward graph fusion |
| self.assertGraphContainsExactly(t_jit.graph_for(x), FUSION_GUARD, 1, consider_subgraphs=True) |
| # assert backward graph fusion |
| bwd_graph = list( |
| list(t_jit.get_debug_state().execution_plans.values())[0].code.grad_executor_states()[0] |
| .execution_plans.values())[0].graph |
| self.assertGraphContainsExactly(bwd_graph, FUSION_GUARD, 1, consider_subgraphs=True) |
| |
| e0 = 1e-5 if dtype is not torch.half else 1e-3 |
| e1 = 1e-4 if dtype is not torch.half else 1e-3 |
| e2 = 1e-3 if dtype is not torch.half else 1e-2 |
| |
| self.assertTrue(self._compare("comparing output failed", jit_o, o, e0)) |
| self.assertTrue(self._compare("comparing input grad failed", x.grad, ref_x.grad, e1)) |
| # TODO: switch to welford and reduce this to 1e-5 |
| # The 1e-3 looks bad, but we don't have welford in codegen, so numeric |
| # is very different between reference and codegen. |
| if has_affine and train: |
| self.assertTrue(self._compare("comparing weight grad failed", |
| my_module.bn.weight.grad, |
| ref_module.bn.weight.grad, |
| e2)) |
| self.assertTrue(self._compare("comparing bias grad failed", |
| my_module.bn.bias.grad, |
| ref_module.bn.bias.grad, |
| e1)) |
| if has_running_stats: |
| self.assertTrue(self._compare("comparing running_mean failed", |
| my_module.bn.running_mean, |
| ref_module.bn.running_mean, |
| e0)) |
| self.assertTrue(self._compare("comparing running_var failed", |
| my_module.bn.running_var, |
| ref_module.bn.running_var, |
| e0)) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_batch_norm_half(self): |
| with torch.backends.cudnn.flags(enabled=True): |
| setups = [ |
| [True, True], |
| [False, False], |
| [True, False], |
| [False, True]] |
| for training_and_track, affine in itertools.product(setups, [True, False]): |
| training, track_running_stats = training_and_track |
| self._test_batch_norm_impl_index_helper(4, 8, 5, affine, track_running_stats, training, torch.half) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_batch_norm_impl_index_inner_bcast(self): |
| # the repro |
| self._test_batch_norm_impl_index_helper(2, 1, 1, False, True, True) |
| |
| # running the full set |
| setups = [ |
| [True, True], |
| [False, False], |
| [True, False], |
| [False, True]] |
| for training_and_track, affine in itertools.product(setups, [True, False]): |
| training, track_running_stats = training_and_track |
| self._test_batch_norm_impl_index_helper(2, 1, 1, affine, track_running_stats, training) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_batch_norm_impl_index_correctness(self): |
| with torch.backends.cudnn.flags(enabled=True): |
| batch = [2, 7, 16] |
| channels = [4, 89, 19, 32] |
| hw = [1, 8, 17, 32] |
| |
| # avoid tolerance failure in CI |
| torch.cuda.manual_seed_all(211) |
| |
| # failing sizes (2, 1, 1, 1) |
| # failing sizes (2, 89, 8, 8) training False, track True, affine: False |
| for b, c, hw in itertools.product(batch, channels, hw): |
| setups = [ |
| [True, True], |
| [False, False], |
| [True, False], |
| [False, True]] |
| for training_and_track, affine in itertools.product(setups, [True, False]): |
| training, track_running_stats = training_and_track |
| self._test_batch_norm_impl_index_helper(b, c, hw, affine, track_running_stats, training) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_softplus_fuser(self): |
| def shifted_softplus(x: torch.Tensor, shift: float): |
| return functional.softplus(x) - shift |
| |
| jitted = torch.jit.script(shifted_softplus) |
| inp = torch.randn(4, 2, dtype=torch.float32, device="cuda").requires_grad_() |
| inp_ref = inp.detach().clone().requires_grad_() |
| grad = torch.randn(4, 2, dtype=torch.float32, device="cuda") |
| |
| aten_o = shifted_softplus(inp_ref, 0.693147) |
| aten_o.backward(grad) |
| aten_grad = inp_ref.grad |
| |
| for i in range(3): |
| jit_o = jitted(inp, 0.693147) |
| inp.grad = None # avoid accumulation on grad |
| jit_o.backward(grad) |
| jit_grad = inp.grad |
| |
| assert torch.allclose(jit_o, aten_o) |
| assert torch.allclose(jit_grad, aten_grad) |
| self.assertGraphContains(jitted.graph_for(inp, 0.693147), FUSION_GROUP, True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_inplace_removal(self): |
| def t(x: torch.Tensor): |
| o = torch.nn.functional.softmax(x, dim=0) |
| o += x |
| return o.relu_() |
| |
| jitted = torch.jit.script(t) |
| inp = torch.randn(4, 2, dtype=torch.float32, device="cuda") |
| |
| for i in range(3): |
| jit_o = jitted(inp) |
| |
| graph = jitted.graph_for(inp) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| self.assertGraphContains(graph, 'aten::add', True) |
| self.assertGraphContains(graph, 'aten::relu', True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_conv2d_bias(self): |
| def t(x: torch.Tensor, w: torch.Tensor, bias: torch.Tensor): |
| o = torch.nn.functional.conv2d(x, w, bias) |
| return o.relu() |
| |
| jitted = torch.jit.script(t) |
| inp = torch.randn(4, 5, 3, 3, dtype=torch.float32, device="cuda") |
| weight = torch.randn(2, 5, 2, 2, dtype=torch.float32, device="cuda") |
| bias = torch.randn(2, dtype=torch.float32, device="cuda") |
| |
| for i in range(3): |
| jit_o = jitted(inp, weight, bias) |
| |
| graph = jitted.graph_for(inp) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| |
| def t_not_fused(x: torch.Tensor, w: torch.Tensor): |
| o = torch.nn.functional.conv2d(x, w) |
| return o.relu() |
| |
| jitted_not_fused = torch.jit.script(t_not_fused) |
| |
| for i in range(3): |
| jit_o = jitted_not_fused(inp, weight) |
| |
| graph = jitted_not_fused.graph_for(inp) |
| self.assertGraphContainsExactly(graph, FUSION_GROUP, 0) |
| self.assertGraphContains(graph, 'aten::relu', True) |
| |
| def t_bias(x: torch.Tensor, w: torch.Tensor, bias: torch.Tensor): |
| o = torch.nn.functional.conv2d(x, w, bias) |
| return o.relu() |
| |
| jitted_bias = torch.jit.script(t_bias) |
| |
| for i in range(3): |
| jit_o = jitted_bias(inp, weight, bias) |
| |
| graph = jitted_bias.graph_for(inp) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| self.assertGraphContains(graph, 'prim::add_optional', True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_remove_output_used_only_in_dtype(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self, num_features=4): |
| super(MyModule, self).__init__() |
| self.bn0 = torch.nn.BatchNorm2d(num_features) |
| self.bn1 = torch.nn.BatchNorm2d(num_features) |
| |
| def forward(self, x, y): |
| o1 = self.bn0(x) |
| o2 = self.bn1(y) |
| return torch.relu(o1 + o2) |
| |
| t = MyModule(4).float().cuda() |
| |
| jitted = torch.jit.script(t) |
| x = torch.randn(3, 4, 2, 5, dtype=torch.float32, device="cuda") |
| y = torch.randn(3, 4, 2, 5, dtype=torch.float32, device="cuda") |
| |
| with torch.cuda.amp.autocast(True): |
| for i in range(5): |
| jit_o = jitted(x, y) |
| |
| jit_o = jitted(x, y) |
| o = t(x, y) |
| |
| self.assertTrue(torch.allclose(jit_o, o)) |
| graph = jitted.graph_for(x, y) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_fix_shape_expression_bn(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self, num_features=4): |
| super(MyModule, self).__init__() |
| self.bn = torch.nn.BatchNorm2d(num_features) |
| |
| def forward(self, x, y): |
| out1 = self.bn(x) |
| out2 = out1 + y |
| out3 = torch.relu(out2) |
| return out3 |
| |
| t = MyModule(4).float().cuda() |
| |
| jitted = torch.jit.script(t) |
| x = torch.randn(3, 4, 2, 5, dtype=torch.float32, device="cuda") |
| y = torch.randn(3, 4, 2, 5, dtype=torch.float32, device="cuda") |
| |
| with torch.cuda.amp.autocast(True): |
| for i in range(5): |
| jit_o = jitted(x, y) |
| |
| jit_o = jitted(x, y) |
| o = t(x, y) |
| |
| self.assertTrue(torch.allclose(jit_o, o)) |
| graph = jitted.graph_for(x, y) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| |
| def _run_fwd_helper(self, func, ops, *args): |
| jitted = torch.jit.script(func) |
| for i in range(3): |
| jit_o = jitted(*args) |
| jit_o = jitted(*args) |
| o = func(*args) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| graph = jitted.graph_for(*args) |
| self.assertGraphContains(graph, FUSION_GROUP, True) |
| for op in ops: |
| self.assertGraphContainsExactly(graph, op, 0) |
| |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_sibling_fusion(self): |
| device = "cuda" |
| dtype = torch.float |
| x = torch.randn(2, 5, dtype=dtype, device=device) |
| y = torch.randn(2, 5, dtype=dtype, device=device) |
| |
| def t(x: torch.Tensor): |
| o1 = x + 1.0 |
| o2 = x * 0.5 |
| return o1, o2 |
| self._run_fwd_helper(t, ['aten::add', 'aten::mul'], x) |
| |
| def t2(x: torch.Tensor, y: torch.Tensor): |
| o1 = x.sum(0) |
| o2 = (x * y).sum(0) |
| return o1, o2 |
| self._run_fwd_helper(t2, ['aten::sum', 'aten::mul'], x, y) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_clean_profile_ivalue(self): |
| device = "cuda" |
| dtype = torch.float |
| x = torch.randn(2, 5, dtype=dtype, device=device, requires_grad=True) |
| # turn on autodiff subgraph inlining |
| # this is to verify that we clean up profile_ivalue node out side of |
| # fusion code path. |
| torch._C._debug_set_autodiff_subgraph_inlining(True) |
| |
| def t(x: torch.Tensor, flag: bool): |
| return torch.dropout(x, 0.5, flag) |
| |
| jit_t = torch.jit.script(t) |
| for idx in range(5): |
| out = jit_t(x, True) |
| |
| graph = jit_t.graph_for(x, True) |
| out = jit_t(x, False) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_sibling_fusion_no_scalar_inputs(self): |
| device = "cuda" |
| dtype = torch.float |
| x = torch.randn(2, 5, dtype=dtype, device=device) |
| y = torch.randn(3, dtype=dtype, device=device) |
| |
| # no tensor dependency between o1/o2, we shouldn't be fusing them |
| def t(x: torch.Tensor, y: torch.Tensor): |
| o1 = x + 1 |
| o2 = y - 1 |
| return o1, o2 |
| |
| jitted = torch.jit.script(t) |
| for i in range(3): |
| jit_o = jitted(x, y) |
| graph = jitted.graph_for(x, y) |
| self.assertGraphContainsExactly(graph, FUSION_GROUP, 0) |
| |
| def _bias_view_relu_helper(self, shape, output_shape, dtype, device, error): |
| class BiasViewRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasViewRelu, self).__init__() |
| self.bias = torch.nn.Parameter(torch.randn(shape, dtype=dtype, device=device), requires_grad=False) |
| with torch.no_grad(): |
| self.bias.fill_(10) |
| |
| def forward(self, inputs: torch.Tensor, view_shape: List[int]): |
| o = inputs + self.bias |
| o = o.view(view_shape) |
| return torch.relu(o) |
| |
| t = BiasViewRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| # profiling |
| jit_o = t_jit(x, output_shape) |
| # optimization |
| jit_o = t_jit(x, output_shape) |
| # final |
| jit_o = t_jit(x, output_shape) |
| # eager - baseline |
| o = t(x, output_shape) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, output_shape) |
| |
| has_inferred_dimension = any([dim == -1 for dim in output_shape]) |
| if has_inferred_dimension: |
| # prohibit fusing when view_shape contains an inferred dimension |
| self.assertGraphContainsExactly(graph, FUSION_GROUP, 0) |
| self.assertGraphContainsExactly(graph, 'prim::view_copy', 0) |
| else: |
| self.assertGraphContains(graph, FUSION_GUARD) |
| self.assertGraphContains(graph, 'prim::view_copy', True) |
| |
| def _alias_bias_view_relu_helper(self, shape, output_shape, dtype, device, error): |
| class BiasViewRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasViewRelu, self).__init__() |
| self.bias = torch.nn.Parameter(torch.randn(shape, dtype=dtype, device=device), requires_grad=False) |
| with torch.no_grad(): |
| self.bias.fill_(10) |
| |
| def forward(self, inputs : torch.Tensor, bias : torch.Tensor, view_shape : List[int]): |
| o = inputs.view(view_shape) |
| inputs.add_(bias) |
| return torch.relu(o) |
| |
| t = BiasViewRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| # profiling |
| jit_o = t_jit(x.clone(), bias, output_shape) |
| # optimization |
| jit_o = t_jit(x.clone(), bias, output_shape) |
| # final |
| jit_o = t_jit(x.clone(), bias, output_shape) |
| # eager - baseline |
| o = t(x.clone(), bias, output_shape) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias, output_shape) |
| self.assertGraphContainsExactly(graph, FUSION_GUARD, 0) |
| self.assertGraphContainsExactly(graph, 'prim::view_copy', 0) |
| |
| # generate random view given original view |
| def _random_view(self, original_view, max_len=8, max_views=10000): |
| class Moves(enum.Enum): |
| Merge = 0 |
| Split = 1 |
| Broadcast = 2 |
| ImplicitBroadcast = 3 |
| Keep = 4 |
| |
| def valid(old_view, new_view): |
| old_view_size = reduce(operator.mul, old_view) |
| new_view_size = reduce(operator.mul, new_view) |
| return old_view_size == new_view_size |
| |
| # given a random starting number, find the nearest divisor |
| def find_nearest_divisor(N): |
| if 2 >= (N - 1): |
| return -1 |
| result = random.randint(2, N - 1) |
| while (N % result) != 0: |
| result += 1 |
| return result |
| |
| complete_views = set([tuple(original_view)]) |
| |
| to_visit = [] |
| # empty new view, curent originaal view, start pos=0, move count = 0, last_move |
| to_visit.append(([], original_view, 0, [], Moves.Keep)) |
| |
| # depth-first search of view shapes, starting from the original view |
| while len(to_visit) > 0 and len(complete_views) < max_views: |
| new_view, old_view, odx, move_list, last_move = to_visit[-1] |
| to_visit.pop() |
| |
| # iterate over each move type |
| for idx in range(len(Moves)): |
| state = Moves(idx) |
| new_view_clone = copy.deepcopy(new_view) |
| old_view_clone = copy.deepcopy(old_view) |
| new_move_list = move_list + [state] |
| new_odx = odx |
| |
| # Update state using Move state |
| if state == Moves.Keep: |
| new_size = old_view_clone[odx] |
| new_view_clone.append(new_size) |
| new_odx += 1 |
| |
| elif state == Moves.Merge: |
| if odx + 1 < len(old_view_clone): |
| new_size = old_view_clone[odx] * old_view_clone[odx + 1] |
| new_view_clone.append(new_size) |
| new_odx += 2 |
| else: |
| continue |
| |
| elif state == Moves.Broadcast and last_move != Moves.Broadcast: |
| new_view_clone.append(1) |
| |
| elif state == Moves.Split: |
| new_size = find_nearest_divisor(old_view_clone[odx]) |
| if new_size == -1: |
| continue |
| new_view_clone.append(new_size) |
| old_view_clone[odx] = int(old_view[odx] / new_size) |
| |
| if old_view_clone[odx] == 1: |
| new_odx += 1 |
| |
| elif state == Moves.ImplicitBroadcast: |
| old_view_clone.insert(odx + 1, 1) |
| new_size = old_view[odx] * 1 |
| new_view_clone.append(new_size) |
| new_odx += 2 |
| |
| if new_odx < len(old_view_clone) and len(new_move_list) < max_len: |
| to_visit.append((new_view_clone, old_view_clone, new_odx, new_move_list, state)) |
| elif (valid(original_view, new_view_clone)): |
| final_new_view = tuple(new_view_clone) |
| complete_views.add(final_new_view) |
| return list(complete_views) |
| |
| # ndims - number of dimensions |
| # test_fn - view test function |
| def _view_test_generator(self, ndims, test_fn): |
| # create random tensor |
| # max value for each dimension |
| max_size = 10e7 |
| max_value = max(int(pow(max_size, 1. / ndims)), 1) |
| sizes = [random.randint(1, max_value) for idx in range(ndims)] |
| x = torch.randn(sizes) |
| |
| original_sizes = list(x.size()) |
| all_views = self._random_view(original_sizes) |
| random.shuffle(all_views) |
| |
| max_samples = 20 |
| max_views = min(len(all_views), max_samples) |
| total = 0 |
| correct = 0 |
| # test random combinations of compatible views |
| for idx in range(max_views): |
| for jdx in range(idx + 1, max_views): |
| total += 1 |
| test_fn(all_views[idx], all_views[jdx], torch.float, 'cuda', 1e-6) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since view is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_view(self): |
| torch._C._jit_set_nvfuser_guard_mode(True) |
| self._bias_view_relu_helper([2, 3, 4, 5], [-1, 4, 5], torch.float, 'cuda', 1e-6) |
| for ndims in range(1, 5): |
| self._view_test_generator(ndims, self._bias_view_relu_helper) |
| self._alias_bias_view_relu_helper([2, 3, 4, 5], [1, 6, 1, 2, 2, 5, 1], torch.float, 'cuda', 1e-6) |
| |
| def _bias_flatten_relu_helper(self, shape, start_dim, end_dim, dtype, device, error): |
| class BiasFlattenRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasFlattenRelu, self).__init__() |
| self.bias = torch.nn.Parameter(torch.randn(shape, dtype=dtype, device=device), requires_grad=False) |
| with torch.no_grad(): |
| self.bias.fill_(10) |
| |
| def forward(self, inputs : torch.Tensor, start_dim : int, end_dim : int): |
| o = inputs + self.bias |
| o = o.flatten(start_dim, end_dim) |
| return torch.relu(o) |
| |
| t = BiasFlattenRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| self._run_helper(t_jit, t, x, start_dim, end_dim) |
| self.assertGraphContains(t_jit.graph_for(x, start_dim, end_dim), 'prim::flatten_copy', True) |
| |
| def _alias_bias_flatten_relu_helper(self, shape, start_dim, end_dim, dtype, device, error): |
| class BiasFlattenRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasFlattenRelu, self).__init__() |
| self.bias = torch.nn.Parameter(torch.randn(shape, dtype=dtype, device=device), requires_grad=False) |
| with torch.no_grad(): |
| self.bias.fill_(10) |
| |
| def forward(self, inputs : torch.Tensor, bias : torch.Tensor, start_dim : int, end_dim : int): |
| o = inputs.flatten(start_dim, end_dim) |
| inputs.add_(bias) |
| return torch.relu(o) |
| |
| t = BiasFlattenRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| # profiling |
| jit_o = t_jit(x.clone(), bias, start_dim, end_dim) |
| # optimization |
| jit_o = t_jit(x.clone(), bias, start_dim, end_dim) |
| # final |
| jit_o = t_jit(x.clone(), bias, start_dim, end_dim) |
| # eager - baseline |
| o = t(x.clone(), bias, start_dim, end_dim) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias, start_dim, end_dim) |
| |
| self.assertGraphContainsExactly(graph, FUSION_GUARD, 0) |
| self.assertGraphContainsExactly(graph, 'prim::flatten_copy', 0) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since flatten is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_flatten(self): |
| torch._C._jit_set_nvfuser_guard_mode(True) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 0, -1, torch.float, 'cuda', 1e-6) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 1, -1, torch.float, 'cuda', 1e-6) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 2, -1, torch.float, 'cuda', 1e-6) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 0, 3, torch.float, 'cuda', 1e-6) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 1, 2, torch.float, 'cuda', 1e-6) |
| self._bias_flatten_relu_helper([2, 3, 4, 5], 2, 2, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 0, -1, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 1, -1, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 2, -1, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 0, 3, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 1, 2, torch.float, 'cuda', 1e-6) |
| self._alias_bias_flatten_relu_helper([2, 3, 4, 5], 2, 2, torch.float, 'cuda', 1e-6) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_strict_fusion(self): |
| def success(x): |
| with torch.jit.strict_fusion(): |
| return x + x + x |
| |
| scripted = self.checkScript(success, (torch.rand([4], device='cuda'),)) |
| g = torch.jit.last_executed_optimized_graph() |
| FileCheck().check_not("aten::add").check("prim::CudaFusionGroup").run(g) |
| |
| def failure(x): |
| with torch.jit.strict_fusion(): |
| return x + torch.mm(x, x) + x |
| |
| with self.assertRaises(Exception) as error_out: |
| foo_s = torch.jit.script(failure) |
| foo_s(torch.rand([4, 4])) |
| foo_s(torch.rand([4, 4])) |
| |
| fc = FileCheck().check("Found unfused operators") |
| fc.check("aten::mm").run(str(error_out.exception)) |
| |
| def _ltc_helper(self, shape, dtype, device, error, approximate=True): |
| # modeled after LTC linear layer |
| class LTC(torch.nn.Module): |
| def __init__(self): |
| super(LTC, self).__init__() |
| self.weight = torch.nn.Parameter(torch.randn([1024, 1024], dtype=dtype, device=device), requires_grad=False) |
| self.bias = torch.nn.Parameter(torch.randn([1, 1024], dtype=dtype, device=device), requires_grad=False) |
| |
| def forward(self, inputs : torch.Tensor): |
| o = inputs.view([32768, 1024]) |
| o = torch.mm(o, self.weight) |
| o = o.view([256, 128, 1024]) |
| o = o + self.bias |
| o = o.view([32768, 1024]) |
| o = o.view([256, 128, 1024]) |
| return torch.nn.functional.gelu(o) |
| |
| t = LTC() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| # profile/optimization runs |
| for i in range(3): |
| jit_o = t_jit(x) |
| o = t(x) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x) |
| self.assertGraphContains(graph, FUSION_GUARD) |
| self.assertGraphContains(graph, 'prim::view_copy', True) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since view is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_nested_view(self): |
| self._ltc_helper([256, 128, 1024], torch.float, 'cuda', 1e-6) |
| |
| def _bias_squeeze_relu_helper(self, shape, dtype, device, error): |
| class BiasSqueezeRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasSqueezeRelu, self).__init__() |
| |
| def forward(self, inputs: torch.Tensor, bias: torch.Tensor): |
| o = inputs + bias |
| o = torch.squeeze(o) |
| return torch.relu(o) |
| |
| t = BiasSqueezeRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| jit_o = t_jit(x, bias) |
| jit_o = t_jit(x, bias) |
| jit_o = t_jit(x, bias) |
| o = t(x, bias) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias) |
| self.assertGraphContains(graph, FUSION_GUARD) |
| self.assertGraphContains(graph, 'prim::squeeze_copy', True) |
| |
| def _alias_bias_squeeze_relu_helper(self, shape, dtype, device, error): |
| class BiasSqueezeRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasSqueezeRelu, self).__init__() |
| |
| def forward(self, inputs: torch.Tensor, bias: torch.Tensor): |
| o = torch.squeeze(inputs) |
| inputs.add_(bias) |
| return torch.relu(o) |
| |
| t = BiasSqueezeRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| jit_o = t_jit(x.clone(), bias) |
| jit_o = t_jit(x.clone(), bias) |
| jit_o = t_jit(x.clone(), bias) |
| o = t(x.clone(), bias) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias) |
| self.assertGraphContainsExactly(graph, FUSION_GUARD, 0) |
| self.assertGraphContainsExactly(graph, 'prim::squeeze_copy', 0) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since squeeze/unsqueeze is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_squeeze(self): |
| self._bias_squeeze_relu_helper([1, 6, 1, 2, 2, 5, 1], torch.float, 'cuda', 1e-6) |
| self._alias_bias_squeeze_relu_helper([1, 6, 1, 2, 2, 5, 1], torch.float, 'cuda', 1e-6) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since squeeze/unsqueeze is disabled now") |
| # remove this after opinfo tests are enabled |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_squeeze_zero(self): |
| x = torch.tensor(1.0, dtype=torch.float, device="cuda") |
| |
| def squeeze_0(x: torch.Tensor): |
| o = x + 1. |
| o = torch.squeeze(o, 0) |
| o = o * 2. |
| return o |
| |
| def squeeze_1(x: torch.Tensor): |
| o = x + 1. |
| o = torch.squeeze(o, -1) |
| o = o + .5 |
| return o |
| |
| squeeze_0_jit = torch.jit.script(squeeze_0) |
| self._run_helper(squeeze_0_jit, squeeze_0, x) |
| squeeze_1_jit = torch.jit.script(squeeze_1) |
| self._run_helper(squeeze_1_jit, squeeze_1, x) |
| |
| def _bias_unsqueeze_relu_helper(self, shape, dtype, device, error): |
| class BiasUnsqueezeRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasUnsqueezeRelu, self).__init__() |
| |
| def forward(self, inputs: torch.Tensor, bias: torch.Tensor): |
| o = inputs + bias |
| o = torch.unsqueeze(o, 0) |
| return torch.relu(o) |
| |
| t = BiasUnsqueezeRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| jit_o = t_jit(x, bias) |
| jit_o = t_jit(x, bias) |
| jit_o = t_jit(x, bias) |
| o = t(x, bias) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias) |
| self.assertGraphContains(graph, FUSION_GUARD) |
| self.assertGraphContains(graph, 'prim::unsqueeze_copy', True) |
| |
| def _alias_bias_unsqueeze_relu_helper(self, shape, dtype, device, error): |
| class BiasUnsqueezeRelu(torch.nn.Module): |
| def __init__(self): |
| super(BiasUnsqueezeRelu, self).__init__() |
| |
| def forward(self, inputs : torch.Tensor, bias : torch.Tensor): |
| o = torch.unsqueeze(inputs, 0) |
| inputs.add_(bias) |
| return torch.relu(o) |
| |
| t = BiasUnsqueezeRelu() |
| x = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| bias = torch.randn(shape, dtype=dtype, device=device, requires_grad=False) |
| t_jit = torch.jit.script(t) |
| |
| jit_o = t_jit(x.clone(), bias) |
| jit_o = t_jit(x.clone(), bias) |
| jit_o = t_jit(x.clone(), bias) |
| o = t(x.clone(), bias) |
| |
| self.assertEqual(o.dtype, jit_o.dtype) |
| self.assertTrue(self._compare("comparing output failed", o, jit_o, error)) |
| graph = t_jit.graph_for(x, bias) |
| self.assertGraphContainsExactly(graph, FUSION_GUARD, 0) |
| self.assertGraphContainsExactly(graph, 'prim::unsqueeze_copy', 0) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since squeeze/unsqueeze is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_unsqueeze(self): |
| self._bias_unsqueeze_relu_helper([2, 3, 4, 5], torch.float, 'cuda', 1e-6) |
| self._alias_bias_unsqueeze_relu_helper([2, 3, 4, 5], torch.float, 'cuda', 1e-6) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since unsqueeze is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_alias_pass_fix(self): |
| x = torch.randn(4, 24, 2, 2, dtype=torch.float, device="cuda") |
| w = torch.randn(24, 24, 1, 1, dtype=torch.float, device="cuda") |
| b = torch.randn(24, dtype=torch.float, device="cuda") |
| |
| def t(x, w, b): |
| b2 = b + 1.0 |
| o = torch.conv2d(x, w, b2) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, w, b) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since squeeze/unsqueeze is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_squeeze_negative_dim(self): |
| x = torch.randn(4, 24, 1, 2, dtype=torch.float, device="cuda") |
| |
| def t(x): |
| o = x + 1.0 |
| o = o.squeeze(-2) |
| o = o * 2.0 |
| return o |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_singleton_fusion(self): |
| x = torch.randn(4, 2, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x.relu() |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_issue1445_fusion(self): |
| def f(t0, t1, t2, t3): |
| masked_input = torch.where(t1, t2, t3) |
| total = masked_input.sum([0, 1, 2, 3]) |
| sizes : List[int] = [] |
| t10 = torch.reshape(t0, sizes) |
| t7 = total / t10 |
| t4 = t7.to(dtype=torch.float) |
| return t4 |
| |
| x = torch.randn(1, 1, 1, 1, device='cuda').to(dtype=torch.long) |
| y = torch.randn(3, 2, 1, 1, device='cuda').to(dtype=torch.bool).expand([3, 2, 1, 2]) |
| z = torch.randn(3, 2, 1, 2, device='cuda') |
| w = torch.tensor(1.5, device='cuda') |
| |
| f_jit = torch.jit.script(f) |
| for i in range(5): |
| out_jit = f_jit(x, y, z, w) |
| out = f(x, y, z, w) |
| self.assertEqual(out, out_jit) |
| self.assertGraphContainsExactly(f_jit.graph_for(x, y, z, w), FUSION_GROUP, 1) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_disable_sibling_fuse(self): |
| x = torch.randn(4, 2, device="cuda") |
| y = torch.randn(8, device="cuda") |
| s = torch.tensor(1.5, device="cuda") |
| |
| with nvfuser_horizontal_fusion(False): |
| def t(x, y, s): |
| o1 = x + s |
| o2 = y + s |
| return o1, o2 |
| |
| t_jit = torch.jit.script(t) |
| for i in range(5): |
| t_jit(x, y, s) |
| |
| # sibling fusion should be disabled with the flag |
| self.assertGraphContainsExactly(t_jit.graph_for(x, y, s), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_build_shape_expression_native_dropout(self): |
| x = torch.randn(4, 2, device="cuda") |
| |
| def t(x): |
| o, mask = torch.native_dropout(x, 0.0, True) |
| o1 = o.sigmoid() |
| o2 = mask.float().sigmoid() |
| return (o1, o2) |
| |
| t_jit = torch.jit.script(t) |
| |
| jit_o = t_jit(x) |
| jit_o = t_jit(x) |
| o = t(x) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_scalar_tensor_permuted(self): |
| x = torch.randn(4, 2, 3, device="cuda").permute([1, 2, 0]) |
| y = torch.tensor(1.0, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x, y): |
| return x + y |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_cpu_scalar(self): |
| x = torch.randn(4, 2, 3, device="cuda") |
| y = torch.tensor(1.0, device="cpu") |
| z = torch.tensor(2.0, device="cpu") |
| |
| with nvfuser_singleton_fusion(True): |
| # testing cpu scalar tensor promotion |
| def t(x, y): |
| return x + y |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y) |
| |
| # scalar cpu tensor add should NOT be fused |
| @torch.jit.script |
| def t1(y, z): |
| return y * z |
| for _ in range(5): |
| t1(y, z) |
| self.assertGraphContainsExactly(t1.graph_for(y, z), FUSION_GUARD, 0) |
| |
| # everything, including scalar cpu tensor add should be fused |
| @torch.jit.script |
| def t2(x, y, z): |
| tmp = y + z |
| return tmp + x |
| for _ in range(5): |
| t2(x, y, z) |
| self.assertGraphContainsExactly(t2.graph_for(x, y, z), 'aten::add', 0) |
| self.assertGraphContainsExactly(t2.graph_for(x, y, z), FUSION_GUARD, 1) |
| |
| # 'cpu_tmp = y + z' shouldn't be fused. |
| @torch.jit.script |
| def t3(x, y, z): |
| cpu_tmp = y + z |
| out = x + y |
| return cpu_tmp, out |
| for _ in range(5): |
| t3(x, y, z) |
| self.assertGraphContainsExactly(t3.graph_for(x, y, z), FUSION_GUARD, 1) |
| self.assertGraphContainsExactly(t3.graph_for(x, y, z), 'aten::add', 1) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since squeeze/unsqueeze is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_shape_expression(self): |
| x = torch.randn(4, 2, 1, 3, device="cuda") |
| |
| def t_unsqueeze(x): |
| t0 = x.relu() |
| t1 = t0.unsqueeze(1) |
| t2 = t1 + 1.0 |
| t3 = t1.size() |
| return t2, t3 |
| |
| def t_squeeze(x): |
| t0 = x.relu() |
| t1 = t0.squeeze() |
| t2 = t1 + 1.0 |
| t3 = t1.size() |
| return t2, t3 |
| |
| def t_squeeze_dim(x): |
| t0 = x.relu() |
| t1 = t0.squeeze(-2) |
| t2 = t1 + 1.0 |
| t3 = t1.size() |
| return t2, t3 |
| |
| # squeezing a non-size 1 dimension should be a no op |
| def t_squeeze_dim_no_op(x): |
| t0 = x.relu() |
| t1 = t0.squeeze(1) |
| t2 = t1 + 1.0 |
| t3 = t1.size() |
| return t2, t3 |
| |
| def run(fn): |
| jit_fn = torch.jit.script(fn) |
| jit_o = jit_fn(x) |
| jit_o = jit_fn(x) |
| jit_o = jit_fn(x) |
| o = fn(x) |
| # output 0 is a tensor, so we check dtype and value |
| self.assertEqual(o[0].dtype, jit_o[0].dtype) |
| self.assertEqual(o[0], jit_o[0]) |
| # output 1 is shape |
| self.assertEqual(o[1], jit_o[1]) |
| self.assertGraphContainsExactly(jit_fn.graph_for(x), FUSION_GUARD, 1) |
| |
| for t in [t_unsqueeze, t_squeeze, t_squeeze_dim, t_squeeze_dim_no_op]: |
| run(t) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_scalar_cuda_tensor(self): |
| x = torch.tensor(2.0, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x + 1.0 |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @torch.jit.script |
| def t_jitted(x): |
| return x.sum(0) |
| |
| for i in range(5): |
| t_jitted(x) |
| self.assertGraphContainsExactly(t_jitted.graph_for(x), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_overlapped_input(self): |
| x = torch.randn(8, device="cuda").as_strided((2, 4), (1, 1)) |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x + 1.0 |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| def test_reduction_empty_axes(self): |
| x = torch.randn(4, 2, 3, device="cuda").permute([1, 2, 0]) |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| sizes : List[int] = [] |
| return x.sum(sizes) |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| def test_int_tensor_input(self): |
| x = torch.randn(4, 2, device="cuda").to(dtype=torch.int) |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x.amax(dim=0) |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_to_boolean(self): |
| x = torch.randn(4, 2, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x.to(dtype=torch.bool) |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_to_copy(self): |
| x = torch.randn(4, 2, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x, dtype : torch.dtype): |
| o = torch.ops.aten._to_copy(x, dtype=dtype) |
| return o |
| |
| t.__disable_jit_function_caching__ = True |
| |
| t_jit = torch.jit.script(t) |
| for dtype in [torch.float16, torch.bool, torch.float64]: |
| self._run_helper(t_jit, t, x, dtype) |
| |
| def t_none(x): |
| with torch.jit.strict_fusion(): |
| o = torch.ops.aten._to_copy(x, dtype=None) |
| return o |
| |
| t_jit_none = torch.jit.script(t_none) |
| self._run_helper(t_jit_none, t_none, x) |
| |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since reshape is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_view_copy_graph_guard(self): |
| x = torch.randn(4, 2, 3, device="cuda").permute([1, 2, 0]) |
| y = [4, 6] |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x, y : List[int]): |
| t1 = x + 1.0 |
| t2 = t1 * 1.0 |
| out = t2.reshape(y) |
| return out.relu() |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y) |
| |
| @unittest.skipIf(ALIAS_TEST_DISABLED, "skipping this test since view is disabled now") |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_view_copy_graph_guard_double_fusion(self): |
| x = torch.randn(2, 2, 5, device="cuda") |
| w = torch.randn(5, 5, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x, w): |
| o = x.view([4, x.size()[-1]]) |
| o = torch.matmul(o, w) |
| o = o.view([2, 2, o.size()[1]]) |
| return o |
| |
| t_jit = torch.jit.script(t) |
| for i in range(3): |
| jit_o = t_jit(x, w) |
| o = t(x, w) |
| self.assertEqual(jit_o, o) |
| self.assertGraphContainsExactly(t_jit.graph_for(x, w), FUSION_GUARD, 2, consider_subgraphs=True) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_input_output_passthrough(self): |
| def t(t0, t1, t2): |
| mask = t1.to(dtype=torch.bool) |
| masked_input = torch.where(t0, mask, t2) |
| return masked_input, mask |
| |
| t_jit = torch.jit.script(t) |
| # stick to integers, this avoid the numerical difference due to our |
| # promotion |
| x = torch.randn(4, 4, device='cuda').to(dtype=torch.bool) |
| y = torch.randn(4, 4, device='cuda').to(dtype=torch.bool) |
| z = torch.tensor(1.0, device='cuda').to(dtype=torch.bool) |
| jit_o = t_jit(x, y, z) |
| jit_o = t_jit(x, y, z) |
| o = t(x, y, z) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_pointwise_reference_tensor(self): |
| def t(input1, input2, scalar): |
| _unsafe_view = torch.ops.aten._unsafe_view(input1, [2, 4, 16]) |
| add_ = torch.ops.aten.add_(_unsafe_view, input2) |
| gelu_ = torch.ops.aten.gelu(add_) |
| view_ = torch.ops.aten.view(gelu_, [8, 16]) |
| mul_ = torch.ops.aten.mul(add_, scalar) |
| return [view_, mul_] |
| |
| x = torch.randn(8, 16, device="cuda") |
| bias = torch.randn(16, device="cuda") |
| scalar = torch.ones(torch.Size([]), device="cuda") |
| |
| t_jit = torch.jit.script(t) |
| for i in range(3): |
| jit_o = t_jit(x, bias, scalar) |
| o = t(x, bias, scalar) |
| self.assertEqual(jit_o, o) |
| self.assertGraphContains(t_jit.graph_for(x, bias, scalar), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| def test_native_batch_norm_backward(self): |
| grad_output = torch.randn(4, 2, 3, device="cuda") |
| input = torch.randn(4, 2, 3, device="cuda") |
| weight = torch.randn(2, device="cuda") |
| |
| r_m = torch.randn(2, device="cuda") |
| r_v = torch.randn(2, device="cuda").abs() |
| |
| save_mean = torch.randn(2, device="cuda") |
| save_invstd = torch.randn(2, device="cuda").abs() |
| |
| with nvfuser_singleton_fusion(True): |
| def t(grad_out, input, weight, r_m, r_v, save_mean, save_invstd, train: bool, eps: float, mask: List[bool]): |
| return torch.ops.aten.native_batch_norm_backward(grad_out, input, weight, r_m, r_v, save_mean, |
| save_invstd, train, eps, mask) |
| |
| t_jit = torch.jit.script(t) |
| for i in range(4): |
| jit_o = t_jit(grad_output, input, weight, r_m.clone(), r_v.clone(), |
| save_mean, save_invstd, True, 1e-5, [True, True, True]) |
| |
| ref_m = r_m.clone() |
| ref_v = r_v.clone() |
| jit_o = t_jit(grad_output, input, weight, r_m, r_v, save_mean, save_invstd, True, 1e-5, [True, True, True]) |
| o = t(grad_output, input, weight, ref_m, ref_v, save_mean, save_invstd, True, 1e-5, [True, True, True]) |
| for oo, jit_oo in zip(o, jit_o): |
| self.assertEqual(oo.dtype, jit_oo.dtype) |
| self.assertEqual(oo, jit_oo) |
| self.assertEqual(ref_m.dtype, r_m.dtype) |
| self.assertEqual(ref_m, r_m) |
| self.assertEqual(ref_v.dtype, r_v.dtype) |
| self.assertEqual(ref_v, r_v) |
| self.assertGraphContains(t_jit.graph_for(grad_output, input, weight, r_m.clone(), r_v.clone, save_mean, |
| save_invstd, True, 1e-5, [True, True, True]), FUSION_GUARD) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_contiguous_on_broadcasted(self): |
| x = torch.randn(4, 1, device="cuda") |
| y = torch.randn(4, 128, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x, y): |
| t1 = x.expand([4, 128]) |
| t2 = t1 * y |
| return t2 |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_skip_parser(self): |
| x = torch.randn(4, 12, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def fn(x): |
| t1 = x + 1.0 |
| return t1.relu() |
| |
| fn_jit = torch.jit.script(fn) |
| self._run_helper(fn_jit, fn, x) |
| |
| # add node should have been merged into fusion |
| self.assertGraphContains(fn_jit.graph_for(x), FUSION_GUARD) |
| self.assertGraphContainsExactly(fn_jit.graph_for(x), 'aten::add', 0) |
| |
| # flips skip parse for `aten::add`, following fusion should skip the |
| # add node |
| self.assertFalse(torch._C._jit_set_nvfuser_skip_node_kind("aten::add", True)) |
| |
| def fn_1(x): |
| t1 = x + 2.0 # change const value so we'll not reuse plan |
| return t1.relu() |
| |
| fn_1_jit = torch.jit.script(fn_1) |
| self._run_helper(fn_1_jit, fn_1, x) |
| |
| # add node should have been merged into fusion |
| self.assertGraphContains(fn_1_jit.graph_for(x), FUSION_GUARD) |
| self.assertGraphContainsExactly(fn_1_jit.graph_for(x), 'aten::add', 1) |
| |
| # flips skip parse for `aten::add`, next fusion should fuse add node |
| self.assertTrue(torch._C._jit_set_nvfuser_skip_node_kind("aten::add", True)) |
| |
| def fn_2(x): |
| t1 = x + 2.0 # change const value so we'll not reuse plan |
| return t1.relu() |
| |
| fn_2_jit = torch.jit.script(fn_2) |
| self._run_helper(fn_2_jit, fn_2, x) |
| |
| # add node should have been merged into fusion |
| self.assertGraphContains(fn_2_jit.graph_for(x), FUSION_GUARD) |
| self.assertGraphContainsExactly(fn_2_jit.graph_for(x), 'aten::add', 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_cuda_fusion_guard(self): |
| old_guard = torch._C._jit_set_nvfuser_guard_mode(True) |
| |
| class ConvModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| |
| def forward(self, x): |
| return x.sin().sigmoid() |
| |
| mod = ConvModule().to(device="cuda") |
| |
| inputs = [torch.randn(20, 16, 50, 100, device="cuda", requires_grad=True)] |
| |
| def reduce_scalar(temp): |
| return temp.sum() |
| |
| scripted = torch.jit.script(mod) |
| with torch.no_grad(): |
| scripted(*inputs) |
| res = scripted(*inputs) |
| reduce_scalar(res).backward() |
| torch._C._jit_set_nvfuser_guard_mode(old_guard) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_nvfuser_comparison_callbacks_with_fallback(self): |
| try: |
| fused_result = None |
| unfused_result = None |
| graph_ir = None |
| |
| def callback(fused_outputs, unfused_outputs, graph_str): |
| nonlocal unfused_result |
| nonlocal fused_result |
| nonlocal graph_ir |
| unfused_result = unfused_outputs[-1] |
| fused_result = fused_outputs[-1] |
| graph_ir = graph_str |
| torch._C._jit_nvfuser_set_comparison_callback(True, callback) |
| |
| def fn(x, y): |
| z = torch.add(x, y) |
| return torch.relu(z) |
| |
| x = torch.rand((4, 4)).cuda() - 0.5 |
| y = torch.rand((4, 4)).cuda() - 0.5 |
| |
| fn_s = torch.jit.script(fn) |
| fn_s(x, y) |
| fn_s(x, y) |
| fn_s(x, y) |
| |
| expected = fn(x, y) |
| |
| self.assertEqual(expected, fused_result) |
| self.assertEqual(expected, unfused_result) |
| FileCheck().check("aten::add").run(graph_ir) |
| finally: |
| torch._C._jit_nvfuser_clear_comparison_callback() |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_nvfuser_comparison_callbacks_without_fallback(self): |
| try: |
| fused_result = None |
| unfused_result = None |
| graph_ir = None |
| |
| def callback(fused_outputs, unfused_outputs, graph_str): |
| nonlocal unfused_result |
| nonlocal fused_result |
| nonlocal graph_ir |
| if len(unfused_outputs) > 0: |
| unfused_result = unfused_outputs[-1] |
| fused_result = fused_outputs[-1] |
| graph_ir = graph_str |
| torch._C._jit_nvfuser_set_comparison_callback(False, callback) |
| |
| def fn(x, y): |
| z = torch.add(x, y) |
| return torch.relu(z) |
| |
| x = torch.rand((4, 4)).cuda() - 0.5 |
| y = torch.rand((4, 4)).cuda() - 0.5 |
| |
| fn_s = torch.jit.script(fn) |
| fn_s(x, y) |
| fn_s(x, y) |
| fn_s(x, y) |
| |
| expected = fn(x, y) |
| |
| self.assertEqual(expected, fused_result) |
| self.assertEqual(None, unfused_result) |
| FileCheck().check("aten::add").run(graph_ir) |
| finally: |
| torch._C._jit_nvfuser_clear_comparison_callback() |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires NVFuser") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_cuda_fusion_guard_backward(self): |
| old_guard = torch._C._jit_set_nvfuser_guard_mode(True) |
| |
| inp = torch.randn(10, device="cuda", requires_grad=True) |
| grad = torch.randn(10, device="cuda") |
| |
| def f(x): |
| a = x.cos().cos() |
| return a |
| scripted = torch.jit.script(f) |
| |
| with profile(activities=[ProfilerActivity.CPU]) as prof: |
| for _ in range(5): |
| inp.grad = None |
| out = scripted(inp) |
| out.backward(grad) |
| |
| # check that we do not have fallback triggered |
| self.assertEqual(prof.events().table().find("fallback"), -1) |
| torch._C._jit_set_nvfuser_guard_mode(old_guard) |
| |
| # TODO: generalize this |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") |
| def test_inf_quick_patch(self): |
| inputs = [torch.tensor([-float('inf'), float('inf'), 4.0], device="cuda"), |
| torch.tensor([1.0, float('inf'), 4.0], device="cuda"), |
| torch.tensor([-float('inf'), -1.5, 4.0], device="cuda"), |
| torch.tensor([1.0, -3.0, float('nan')], device="cuda"), |
| torch.tensor([-float('inf'), -float('inf'), -float('inf')], device="cuda"), |
| torch.tensor([float('inf'), float('inf'), float('inf')], device="cuda"), |
| torch.tensor([float('nan'), float('nan'), float('nan')], device="cuda")] |
| |
| def fn_amax(x): |
| return x.amax(dim=0) |
| |
| def fn_amin(x): |
| return x.amin(dim=0) |
| |
| def fn_add_nan(x): |
| return x.relu() + float('nan') |
| |
| def fn_add(x): |
| return x + 1.0 |
| |
| with nvfuser_singleton_fusion(True): |
| for t in [fn_amax, fn_amin, fn_add, fn_add_nan]: |
| for x in inputs: |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_clamp_reversed_bound(self): |
| x = torch.tensor([1., -float('inf'), 2., float('inf'), float('nan')], device="cuda") |
| |
| def t(x): |
| return x.clamp(min=1., max=0.5) |
| |
| with nvfuser_singleton_fusion(True): |
| jit_t = torch.jit.script(t) |
| self._run_helper(jit_t, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_issue_1785(self): |
| class Fusion(torch.nn.Module): |
| def __init__(self): |
| super(Fusion, self).__init__() |
| |
| def forward(self, x, a, b): |
| out = torch.mul(x.unsqueeze(-1), a) |
| out = out + b |
| return out |
| |
| x = torch.randn(1024, 192, 3, device='cuda') |
| a = torch.randn(3, 128, device='cuda') |
| b = torch.randn(3, 128, device='cuda') |
| |
| model = Fusion() |
| jit_model = torch.jit.script(model) |
| |
| with torch.jit.fuser('fuser2'): |
| for _ in range(4): |
| out_ref = model(x, a, b) |
| out_jit = jit_model(x, a, b) |
| |
| out_ref = model(x, a, b) |
| out_jit = jit_model(x, a, b) |
| self.assertTrue(self._compare("comparing output failed", out_ref, out_jit, 1e-5)) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_high_rank_fusion(self): |
| # currently we want to limit fusion to node with input where rank <= 8 |
| rank_limit = 8 |
| shapes = [4 for i in range(rank_limit + 1)] |
| x = torch.randn(shapes, device="cuda") |
| |
| with nvfuser_singleton_fusion(True): |
| def t(x): |
| return x.relu() |
| |
| jit_t = torch.jit.script(t) |
| for i in range(5): |
| jit_t(x) |
| self.assertGraphContainsExactly(jit_t.graph_for(x), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_clamp(self): |
| x = torch.tensor([1., float('inf'), 2., float('nan'), float('-inf')], device="cuda") |
| |
| def clamp_max(x): |
| return x.clamp(max=1.5) |
| |
| def clamp_min_max(x): |
| return x.clamp(min=1.5) |
| |
| def clamp_min(x): |
| return x.clamp(min=1., max=3.) |
| |
| with nvfuser_singleton_fusion(True): |
| for t in [clamp_max, clamp_min, clamp_min_max]: |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_device_constant(self): |
| x = torch.randn(4, 2, device="cuda") |
| |
| def t(x): |
| return torch.rand_like(x, device=torch.device(type='cuda')) |
| |
| # cpu tensor shouldn't be fused |
| def t_cpu(x): |
| return torch.rand_like(x, device=torch.device(type='cpu')) |
| |
| with nvfuser_singleton_fusion(True): |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x) |
| |
| t_cpu_jit = torch.jit.script(t_cpu) |
| for i in range(5): |
| t_cpu_jit(x) |
| |
| self.assertGraphContainsExactly(t_cpu_jit.graph_for(x), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_expand(self): |
| device = "cuda" |
| x = torch.randn(3, 5, device=device) |
| y = torch.randn(4, 2, 3, 5, device=device) |
| |
| def t(x, y): |
| with torch.jit.strict_fusion(): |
| x = x.relu() |
| o0 = x.expand(2, 3, 5) |
| o1 = x.expand_as(y) |
| return o0, o1 |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x, y, check_stride=True) |
| |
| def t2(x, y): |
| o0 = x.expand(2, 3, 5) |
| o1 = x.expand_as(y) |
| x.add_(1) |
| return o0, o1 |
| |
| t2_jit = torch.jit.script(t2) |
| self._run_helper(t2_jit, t2, x, y, check_stride=True, num_fusion=0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_scheduler_with_polymorphic_broadcast(self): |
| device = "cuda" |
| x0 = torch.randn(10, 128, device=device) |
| x1 = torch.rand_like(x0) |
| x2 = torch.randn(10, device=device) |
| |
| def t(x0, x1, x2): |
| x3 = x2.unsqueeze(-1) |
| x4 = x3 + x0 |
| x5 = x3 + x1 |
| x6 = x5.sum(0) |
| return x4, x6 |
| |
| t_jit = torch.jit.script(t) |
| self._run_helper(t_jit, t, x0, x1, x2, check_stride=True) |
| |
| x2 = torch.randn(128, device=device) |
| |
| def t2(x0, x1, x2): |
| x3 = x2.unsqueeze(0) |
| x4 = x3 + x0 |
| x5 = x3 + x1 |
| x6 = x5.sum(1) |
| return x4, x6 |
| |
| t2_jit = torch.jit.script(t2) |
| self._run_helper(t2_jit, t2, x0, x1, x2, check_stride=True) |
| |
| |
| class TestEnableDisableCudaFuser(JitTestCase): |
| def setUp(self): |
| super().setUp() |
| if RUN_NVFUSER: |
| self.is_enabled = torch._C._jit_set_nvfuser_enabled(False) |
| |
| def tearDown(self): |
| if RUN_NVFUSER: |
| torch._C._jit_set_nvfuser_enabled(self.is_enabled) |
| super().tearDown() |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| def test_context_manager_test(self): |
| x = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| y = torch.randn(4, 8, dtype=torch.float, device="cuda") |
| with torch.jit.fuser('fuser2'): |
| with torch.jit.fuser('fuser2'): |
| |
| def t1(x, y): |
| o = x + y |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t1) |
| t_jit(x, y) |
| t_jit(x, y) |
| self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD) |
| |
| def t2(x, y): |
| o = x + y |
| o = o + 3.0 |
| return o |
| t_jit_2 = torch.jit.script(t2) |
| t_jit_2(x, y) |
| t_jit_2(x, y) |
| self.assertGraphContains(t_jit_2.graph_for(x, y), FUSION_GUARD) |
| |
| def t3(x, y): |
| o = x + y |
| o = o + 4.0 |
| return o |
| t_jit_3 = torch.jit.script(t3) |
| t_jit_3(x, y) |
| t_jit_3(x, y) |
| self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), FUSION_GUARD, 0) |
| |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| def test_register_fuser(self): |
| self.assertFalse(torch._C._jit_set_nvfuser_enabled(True)) |
| self.assertTrue(torch._C._jit_nvfuser_enabled()) |
| self.assertTrue(torch._C._jit_set_nvfuser_enabled(True)) |
| self.assertTrue(torch._C._jit_nvfuser_enabled()) |
| self.assertTrue(torch._C._jit_set_nvfuser_enabled(False)) |
| self.assertFalse(torch._C._jit_nvfuser_enabled()) |
| |
| @unittest.skipIf(RUN_CUDA, "Testing on CPU only") |
| def test_register_fuser_cpu(self): |
| with self.assertRaises(RuntimeError): |
| torch._C._jit_set_nvfuser_enabled(True) |
| torch._C._jit_set_nvfuser_enabled(False) |
| |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @unittest.skipIf(not TEST_WITH_ROCM, "ROCM test only") |
| def test_register_fuser_rocm(self): |
| with self.assertRaises(RuntimeError): |
| torch._C._jit_set_nvfuser_enabled(True) |
| torch._C._jit_set_nvfuser_enabled(False) |
| |
| def test_can_be_enabled_nvfuser(self): |
| if TEST_WITH_ROCM: |
| expected = False |
| else: |
| expected = RUN_CUDA |
| |
| self.assertEqual(expected, torch._C._jit_nvfuser_can_be_enabled()) |
| |
| # See TestNNCOpInfoParent |
| class TestCudaFuserOpInfoParent(JitCommonTestCase): |
| pass |
| |
| class TestCudaFuserOpInfo(TestCudaFuserOpInfoParent): |
| def setUp(self): |
| super(TestCudaFuserOpInfoParent, self).setUp() |
| if RUN_NVFUSER: |
| self.cuda_fuser_options = CudaFuserTestOptions() |
| # enables guard mode since tracing could change graph to violate guard. |
| torch._C._jit_set_nvfuser_guard_mode(True) |
| self.nvfuser_single_node_mode = torch._C._jit_set_nvfuser_single_node_mode(True) |
| |
| def tearDown(self): |
| if RUN_NVFUSER: |
| self.cuda_fuser_options.restore() |
| |
| torch._C._jit_set_nvfuser_single_node_mode(self.nvfuser_single_node_mode) |
| |
| super(TestCudaFuserOpInfoParent, self).tearDown() |
| |
| @slowTest |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @ops(op_db, dtypes=OpDTypes.supported) |
| def test_nvfuser_correctness(self, device, dtype, op): |
| if not op.supports_tracing: |
| self.skipTest("nvfuser requires tracing support") |
| |
| variant_sample_pairs = get_traced_sample_variant_pairs(device, dtype, op) |
| |
| for variant, sample in variant_sample_pairs: |
| trace = create_traced_fn(self, variant, cache_traced_fn=True) |
| ref = variant(*clone_inputs((sample.input, *sample.args)), **sample.kwargs) |
| |
| trace(*clone_inputs((sample.input, *sample.args)), **sample.kwargs) |
| |
| val = trace(*clone_inputs((sample.input, *sample.args)), **sample.kwargs) |
| |
| self.assertEqual(ref, val, exact_layout=True) |
| |
| # Note: Clearing CU after NVFuser tests |
| # https://github.com/pytorch/pytorch/issues/35600 |
| # each torch.jit.trace adds state to the _python_cu compilation unit |
| # since this test traces a lot of functions, out-of-memory can occur |
| # if the CU is not cleared. |
| torch.jit._state._python_cu.drop_all_functions() |
| |
| @slowTest |
| @unittest.skipIf(not RUN_NVFUSER, "requires CUDA") |
| @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, |
| "Requires fusion optimization pass to be effective") |
| @ops(op_db, allowed_dtypes=(torch.float16, torch.bfloat16, torch.float32, |
| torch.float64, torch.complex64, torch.complex128)) |
| def test_nvfuser_extremal_values(self, device, dtype, op): |
| if not op.supports_tracing: |
| self.skipTest("nvfuser requires tracing support") |
| |
| variant_sample_pairs = get_traced_sample_variant_pairs(device, dtype, op) |
| |
| def _get_extremal_tensor(x, val, dtype): |
| if x.dtype != dtype: |
| return x |
| return torch.full_like(x, val) |
| |
| def _get_extremal_input(x, val, dtype): |
| if isinstance(x, torch.Tensor): |
| return _get_extremal_tensor(x, val, dtype) |
| elif is_iterable_of_tensors(x): |
| return [_get_extremal_tensor(y, val, dtype) for y in x] |
| return x |
| |
| def _get_extremal_sample(sample: SampleInput, val, dtype): |
| extremal_sample = SampleInput( |
| input=_get_extremal_input(sample.input, val, dtype), |
| args=[_get_extremal_input(x, val, dtype) for x in sample.args], |
| kwargs={k: _get_extremal_input(v, val, dtype) for k, v in sample.kwargs.items()}, |
| ) |
| return extremal_sample |
| |
| def _get_extremal_samples(sample: SampleInput, dtype): |
| vals = [float('inf'), float('-inf'), float('nan')] |
| if dtype.is_complex: |
| complex_vals = itertools.product(vals, vals) |
| vals = list(map(lambda x: complex(*x), complex_vals)) |
| for val in vals: |
| yield _get_extremal_sample(sample, val, dtype) |
| |
| variant_sample_pairs = get_traced_sample_variant_pairs(device, dtype, op) |
| |
| for variant, sample in variant_sample_pairs: |
| |
| trace = create_traced_fn(self, variant, cache_traced_fn=True) |
| trace(*clone_inputs((sample.input, *sample.args)), **sample.kwargs) |
| trace(*clone_inputs((sample.input, *sample.args)), **sample.kwargs) |
| |
| for extremal_sample in _get_extremal_samples(sample, dtype): |
| try: |
| with freeze_rng_state(): |
| ref = variant(*clone_inputs((extremal_sample.input, *extremal_sample.args)), |
| **extremal_sample.kwargs) |
| except (torch._C._LinAlgError, RuntimeError, ValueError): |
| # if eager errors out, then don't expect NVFuser to pass |
| continue |
| |
| with freeze_rng_state(): |
| val = trace(*clone_inputs((extremal_sample.input, *extremal_sample.args)), |
| **extremal_sample.kwargs) |
| |
| self.assertEqual(val, ref, equal_nan=True, exact_device=True) |
| |
| # See [Note: Clearing CU after NVFuser tests] |
| torch.jit._state._python_cu.drop_all_functions() |
| |
| instantiate_device_type_tests(TestCudaFuserOpInfo, globals(), only_for=("cuda")) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |