| # Owner(s): ["module: optimizer"] |
| |
| import warnings |
| import math |
| import unittest |
| import functools |
| import itertools |
| from copy import deepcopy |
| |
| import torch |
| from torch._six import inf |
| import torch.optim as optim |
| import torch.optim._multi_tensor as optim_mt |
| import torch.nn.functional as F |
| from torch.optim import SGD |
| from torch.autograd import Variable |
| from torch import sparse |
| from torch.optim.lr_scheduler import LambdaLR, MultiplicativeLR, SequentialLR, StepLR, \ |
| MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, \ |
| _LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, \ |
| EPOCH_DEPRECATION_WARNING |
| from torch.optim.swa_utils import AveragedModel, SWALR, update_bn |
| from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_UBSAN, load_tests, \ |
| parametrize, instantiate_parametrized_tests, gradcheck |
| # load_tests from common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| |
| def rosenbrock(tensor): |
| x, y = tensor |
| return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 |
| |
| |
| def drosenbrock(tensor): |
| x, y = tensor |
| return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) |
| |
| |
| class TestOptim(TestCase): |
| exact_dtype = True |
| |
| def _test_rosenbrock_sparse(self, constructor, scheduler_constructors=None, |
| sparse_only=False, maximize=False): |
| if scheduler_constructors is None: |
| scheduler_constructors = [] |
| params_t = torch.tensor([1.5, 1.5]) |
| |
| params = Variable(params_t, requires_grad=True) |
| optimizer = constructor([params]) |
| schedulers = [] |
| for scheduler_constructor in scheduler_constructors: |
| schedulers.append(scheduler_constructor(optimizer)) |
| |
| if not sparse_only: |
| params_c = Variable(params_t.clone(), requires_grad=True) |
| optimizer_c = constructor([params_c]) |
| |
| solution = torch.tensor([1, 1]) |
| initial_dist = params.data.dist(solution) |
| |
| def eval(params, sparse_grad, w): |
| # Depending on w, provide only the x or y gradient |
| optimizer.zero_grad() |
| loss = rosenbrock(params) |
| loss.backward() |
| grad = drosenbrock(params.data) |
| # NB: We torture test the optimizer by returning an |
| # uncoalesced sparse tensor |
| if w: |
| i = torch.LongTensor([[0, 0]]) |
| x = grad[0] |
| v = torch.tensor([x / 4., x - x / 4.]) |
| else: |
| i = torch.LongTensor([[1, 1]]) |
| y = grad[1] |
| v = torch.tensor([y - y / 4., y / 4.]) |
| x = sparse.DoubleTensor(i, v, torch.Size([2])).to(dtype=v.dtype) |
| with torch.no_grad(): |
| if sparse_grad: |
| params.grad = x |
| else: |
| params.grad = x.to_dense() |
| return loss |
| |
| for i in range(2000): |
| # Do cyclic coordinate descent |
| w = i % 2 |
| optimizer.step(functools.partial(eval, params, True, w)) |
| for scheduler in schedulers: |
| if isinstance(scheduler, ReduceLROnPlateau): |
| scheduler.step(rosenbrock(params)) |
| else: |
| scheduler.step() |
| if not sparse_only: |
| optimizer_c.step(functools.partial(eval, params_c, False, w)) |
| self.assertEqual(params.data, params_c.data) |
| |
| if not maximize: |
| self.assertLessEqual(params.data.dist(solution), initial_dist) |
| else: |
| self.assertGreaterEqual(rosenbrock(params.data), rosenbrock(params_t)) |
| |
| def _test_basic_cases_template(self, weight, bias, input, constructor, |
| scheduler_constructors, constructor_accepts_maximize=True): |
| maximize_options = set([False, constructor_accepts_maximize]) |
| if not constructor_accepts_maximize: |
| def three_arg_constructor(weight, bias, maximize): |
| self.assertFalse(maximize) |
| return constructor(weight, bias) |
| else: |
| three_arg_constructor = constructor |
| |
| for maximize in maximize_options: |
| weight = Variable(weight, requires_grad=True) |
| bias = Variable(bias, requires_grad=True) |
| input = Variable(input) |
| optimizer = three_arg_constructor(weight, bias, maximize) |
| schedulers = [] |
| for scheduler_constructor in scheduler_constructors: |
| schedulers.append(scheduler_constructor(optimizer)) |
| |
| # to check if the optimizer can be printed as a string |
| optimizer.__repr__() |
| |
| def fn(): |
| optimizer.zero_grad() |
| y = weight.mv(input) |
| if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device(): |
| y = y.cuda(bias.get_device()) |
| loss = (y + bias).pow(2).sum() |
| loss.backward() |
| return loss |
| |
| initial_value = fn().item() |
| for _i in range(200): |
| for scheduler in schedulers: |
| if isinstance(scheduler, ReduceLROnPlateau): |
| val_loss = fn() |
| scheduler.step(val_loss) |
| else: |
| scheduler.step() |
| optimizer.step(fn) |
| if maximize: |
| self.assertGreater(fn().item(), initial_value) |
| else: |
| self.assertLess(fn().item(), initial_value) |
| |
| def _test_state_dict(self, weight, bias, input, constructor): |
| weight = Variable(weight, requires_grad=True) |
| bias = Variable(bias, requires_grad=True) |
| input = Variable(input) |
| |
| def fn_base(optimizer, weight, bias): |
| optimizer.zero_grad() |
| i = input_cuda if weight.is_cuda else input |
| loss = (weight.mv(i) + bias).pow(2).sum() |
| loss.backward() |
| return loss |
| |
| optimizer = constructor(weight, bias) |
| fn = functools.partial(fn_base, optimizer, weight, bias) |
| |
| # Prime the optimizer |
| for _i in range(20): |
| optimizer.step(fn) |
| # Clone the weights and construct new optimizer for them |
| weight_c = Variable(weight.data.clone(), requires_grad=True) |
| bias_c = Variable(bias.data.clone(), requires_grad=True) |
| optimizer_c = constructor(weight_c, bias_c) |
| fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) |
| # Load state dict |
| state_dict = deepcopy(optimizer.state_dict()) |
| state_dict_c = deepcopy(optimizer.state_dict()) |
| optimizer_c.load_state_dict(state_dict_c) |
| # Run both optimizations in parallel |
| for _i in range(20): |
| optimizer.step(fn) |
| optimizer_c.step(fn_c) |
| self.assertEqual(weight, weight_c) |
| self.assertEqual(bias, bias_c) |
| # Make sure state dict wasn't modified |
| self.assertEqual(state_dict, state_dict_c) |
| # Make sure state dict is deterministic with equal but not identical parameters |
| self.assertEqual(optimizer.state_dict(), optimizer_c.state_dict()) |
| # Make sure repeated parameters have identical representation in state dict |
| optimizer_c.param_groups.extend(optimizer_c.param_groups) |
| self.assertEqual(optimizer.state_dict()['param_groups'][-1], |
| optimizer_c.state_dict()['param_groups'][-1]) |
| |
| # Make sure that optimizers that support maximize can load older models |
| state_dict = optimizer.state_dict() |
| if 'maximize' in state_dict['param_groups'][0]: |
| for group in state_dict['param_groups']: |
| del group['maximize'] |
| optimizer.load_state_dict(state_dict) |
| # Make sure we can still step |
| optimizer.step() |
| # Make sure that optimizers that support foreach can load older models |
| state_dict = optimizer.state_dict() |
| if 'foreach' in state_dict['param_groups'][0]: |
| for group in state_dict['param_groups']: |
| del group['foreach'] |
| optimizer.load_state_dict(state_dict) |
| # Make sure we can still step |
| optimizer.step() |
| |
| # Make sure that loading optimizers with step not wrapped in tensor can work |
| state_dict = optimizer.state_dict() |
| if 'step' in state_dict['state'][0] and torch.is_tensor(state_dict['state'][0]['step']): |
| for state in state_dict['state'].values(): |
| state['step'] = state['step'].item() |
| optimizer.load_state_dict(state_dict) |
| optimizer.step() |
| |
| # Check that state dict can be loaded even when we cast parameters |
| # to a different type and move to a different device. |
| if not torch.cuda.is_available(): |
| return |
| |
| input_cuda = Variable(input.data.float().cuda()) |
| weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True) |
| bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True) |
| optimizer_cuda = constructor(weight_cuda, bias_cuda) |
| fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda) |
| |
| state_dict = deepcopy(optimizer.state_dict()) |
| state_dict_c = deepcopy(optimizer.state_dict()) |
| optimizer_cuda.load_state_dict(state_dict_c) |
| |
| # Make sure state dict wasn't modified |
| self.assertEqual(state_dict, state_dict_c) |
| |
| # Make sure that device of state['step'] is still CPU |
| new_state_dict = optimizer_cuda.state_dict() |
| if 'step' in state_dict['state'][0] and torch.is_tensor(state_dict['state'][0]['step']): |
| for state in new_state_dict['state'].values(): |
| self.assertEqual(state['step'].device.type, 'cpu') |
| |
| for _i in range(20): |
| optimizer.step(fn) |
| optimizer_cuda.step(fn_cuda) |
| self.assertEqual(weight, weight_cuda) |
| self.assertEqual(bias, bias_cuda) |
| |
| # validate deepcopy() copies all public attributes |
| def getPublicAttr(obj): |
| return set(k for k in obj.__dict__ if not k.startswith('_')) |
| self.assertEqual(getPublicAttr(optimizer), getPublicAttr(deepcopy(optimizer))) |
| |
| def _test_basic_cases(self, constructor, scheduler_constructors=None, |
| ignore_multidevice=False, constructor_accepts_maximize=False): |
| if scheduler_constructors is None: |
| scheduler_constructors = [] |
| |
| def make_two_arg_constructor(constructor, maximize: bool = False): |
| if constructor_accepts_maximize: |
| return lambda weight, bias: constructor(weight, bias, maximize) |
| return constructor |
| |
| for maximize in (True, False): |
| self._test_state_dict( |
| torch.randn(10, 5), |
| torch.randn(10), |
| torch.randn(5), |
| make_two_arg_constructor(constructor, maximize), |
| ) |
| self._test_basic_cases_template( |
| torch.randn(10, 5), |
| torch.randn(10), |
| torch.randn(5), |
| constructor, |
| scheduler_constructors, |
| constructor_accepts_maximize, |
| ) |
| # non-contiguous parameters |
| self._test_basic_cases_template( |
| torch.randn(10, 5, 2)[..., 0], |
| torch.randn(10, 2)[..., 0], |
| torch.randn(5), |
| constructor, |
| scheduler_constructors, |
| constructor_accepts_maximize, |
| ) |
| # CUDA |
| if not torch.cuda.is_available(): |
| return |
| self._test_basic_cases_template( |
| torch.randn(10, 5).cuda(), |
| torch.randn(10).cuda(), |
| torch.randn(5).cuda(), |
| constructor, |
| scheduler_constructors, |
| constructor_accepts_maximize, |
| ) |
| # Multi-GPU |
| if not torch.cuda.device_count() > 1 or ignore_multidevice: |
| return |
| self._test_basic_cases_template( |
| torch.randn(10, 5).cuda(0), |
| torch.randn(10).cuda(1), |
| torch.randn(5).cuda(0), |
| constructor, |
| scheduler_constructors, |
| constructor_accepts_maximize, |
| ) |
| |
| def _test_complex_optimizer(self, optimizer_constructor): |
| complex_param = torch.randn(5, 5, dtype=torch.complex64, requires_grad=True) |
| real_param = torch.view_as_real(complex_param).detach().clone().requires_grad_() |
| complex_opt = optimizer_constructor(complex_param) |
| real_opt = optimizer_constructor(real_param) |
| |
| for i in range(3): |
| complex_param.grad = torch.randn_like(complex_param) |
| real_param.grad = torch.view_as_real(complex_param.grad) |
| |
| complex_opt.step() |
| real_opt.step() |
| |
| self.assertEqual(torch.view_as_real(complex_param), real_param) |
| |
| def _test_complex_2d(self, optimizer_constructor, f=None): |
| if f is None: |
| f = rosenbrock |
| a1 = torch.randn(2, dtype=torch.complex64, requires_grad=True) |
| a1_real = a1.real.clone().detach() |
| a1_imag = a1.imag.clone().detach() |
| a1_real.requires_grad_() |
| a1_imag.requires_grad_() |
| optim1 = optimizer_constructor([a1]) |
| optim2 = optimizer_constructor([a1_real, a1_imag]) |
| |
| for i in range(10): |
| optim1.zero_grad() |
| optim2.zero_grad() |
| a2 = torch.complex(a1_real, a1_imag) |
| f(a1).backward() |
| f(a2).backward() |
| |
| self.assertEqual(a1.grad.real, a1_real.grad) |
| self.assertEqual(a1.grad.imag, a1_imag.grad) |
| |
| optim1.step() |
| optim2.step() |
| self.assertEqual(a1.real, a1_real) |
| self.assertEqual(a1.imag, a1_imag) |
| |
| def _build_params_dict(self, weight, bias, **kwargs): |
| return [{'params': [weight]}, dict(params=[bias], **kwargs)] |
| |
| def _build_params_dict_single(self, weight, bias, **kwargs): |
| return [dict(params=bias, **kwargs)] |
| |
| def test_sgd(self): |
| for optimizer in [optim.SGD, optim_mt.SGD]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict_single(weight, bias, lr=1e-2), |
| lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict_single(weight, bias, lr=1e-2), maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.9, step_size=10)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: LinearLR(opt, start_factor=0.4, end_factor=0.8, total_iters=4)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.9, step_size=10), |
| lambda opt: LinearLR(opt, start_factor=0.4, end_factor=0.6, total_iters=4)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.9, step_size=10), |
| lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.99, step_size=10), |
| lambda opt: ExponentialLR(opt, gamma=0.99), |
| lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, momentum=0.5, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: |
| optimizer([weight, bias], nesterov=True, lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid momentum value: -0.5"): |
| optimizer(None, lr=1e-2, momentum=-0.5) |
| |
| def test_sgd_sparse(self): |
| for optimizer in [optim.SGD, optim_mt.SGD]: |
| self._test_rosenbrock_sparse( |
| lambda params: optimizer(params, lr=5e-3) |
| ) |
| self._test_rosenbrock_sparse( |
| lambda params: optimizer(params, lr=0.005), |
| [lambda opt: StepLR(opt, gamma=0.99999, step_size=300)] |
| ) |
| |
| def test_sgd_complex(self): |
| for optimizer in [optim.SGD, optim_mt.SGD]: |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=0.001) |
| ) |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=0.001, momentum=1) |
| ) |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=0.001, momentum=1, weight_decay=1) |
| ) |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=0.001, nesterov=True, momentum=1, weight_decay=1) |
| ) |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=0.001, momentum=1, dampening=0.5, weight_decay=1) |
| ) |
| |
| def test_multi_tensor_optimizers(self): |
| if not torch.cuda.is_available(): |
| return |
| |
| optimizer_pairs_with_flags = [ |
| ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=1., amsgrad=True)), |
| ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=1., amsgrad=False)), |
| ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=0., amsgrad=True)), |
| ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=0., amsgrad=False)), |
| ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=1., amsgrad=True)), |
| ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=1., amsgrad=False)), |
| ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=0., amsgrad=True)), |
| ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=0., amsgrad=False)), |
| ((optim.NAdam, optim._multi_tensor.NAdam), dict(weight_decay=0., momentum_decay=6e-3)), |
| ((optim.NAdam, optim._multi_tensor.NAdam), dict(weight_decay=1., momentum_decay=6e-3)), |
| ((optim.NAdam, optim._multi_tensor.NAdam), dict(weight_decay=0., momentum_decay=4e-3)), |
| ((optim.NAdam, optim._multi_tensor.NAdam), dict(weight_decay=0.01, momentum_decay=4e-3)), |
| ((optim.SGD, optim._multi_tensor.SGD), dict(lr=0.2, momentum=1, dampening=0, weight_decay=1, nesterov=True)), |
| ((optim.SGD, optim._multi_tensor.SGD), dict(lr=0.2, momentum=1, dampening=0.5, weight_decay=1, nesterov=False)), |
| ((optim.RAdam, optim._multi_tensor.RAdam), dict(weight_decay=0)), |
| ((optim.RAdam, optim._multi_tensor.RAdam), dict(weight_decay=1)), |
| ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=1, centered=True)), |
| ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=0, centered=True)), |
| ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=1, centered=False)), |
| ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=0, momentum=1, centered=False)), |
| ((optim.Rprop, optim._multi_tensor.Rprop), dict(lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50))), |
| ((optim.ASGD, optim._multi_tensor.ASGD), dict(weight_decay=0)), |
| ((optim.ASGD, optim._multi_tensor.ASGD), dict(weight_decay=1)), |
| ((optim.Adamax, optim._multi_tensor.Adamax), dict(weight_decay=0)), |
| ((optim.Adamax, optim._multi_tensor.Adamax), dict(weight_decay=1)), |
| ((optim.Adadelta, optim._multi_tensor.Adadelta), dict(weight_decay=0)), |
| ((optim.Adadelta, optim._multi_tensor.Adadelta), dict(weight_decay=1)), |
| ((optim.Adagrad, optim._multi_tensor.Adagrad), dict(weight_decay=0)), |
| ((optim.Adagrad, optim._multi_tensor.Adagrad), dict(weight_decay=1)), |
| ] |
| |
| kIterations = 4 |
| device = 'cuda' |
| |
| for optimizers, params in optimizer_pairs_with_flags: |
| res = [] |
| for opt in optimizers: |
| input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=torch.float64, device=device).reshape(3, 2) |
| |
| torch.manual_seed(1) |
| model = torch.nn.Sequential(torch.nn.Linear(2, 3), |
| torch.nn.Sigmoid(), |
| torch.nn.Linear(3, 1), |
| torch.nn.Sigmoid()) |
| model.to(dtype=torch.float64, device=device) |
| optimizer = opt(model.parameters(), **params) |
| |
| for _ in range(kIterations): |
| optimizer.zero_grad() |
| output = model(input) |
| loss = output.sum() |
| loss.backward() |
| |
| # Test that step behaves as expected (a no-op) when grads are set to None |
| if iter == 0: |
| optimizer.zero_grad(set_to_none=True) |
| |
| optimizer.step() |
| |
| res.append(model.parameters()) |
| |
| for p1, p2 in zip(res[0], res[1]): |
| self.assertEqual(p1, p2, atol=5e-5, rtol=0) |
| |
| def test_adam(self): |
| for optimizer in [optim.Adam, optim_mt.Adam]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, amsgrad=True, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, weight_decay=0.1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, amsgrad=True, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, maximize=maximize), |
| [lambda opt: ExponentialLR(opt, gamma=0.9)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, maximize=maximize), |
| [lambda opt: LinearLR(opt, start_factor=0.4, total_iters=4)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, maximize=maximize), |
| [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, amsgrad=True, maximize=maximize), |
| [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4), |
| lambda opt: ExponentialLR(opt, gamma=0.9)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, amsgrad=True, maximize=maximize), |
| [lambda opt: ExponentialLR(opt, gamma=0.9), |
| lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, amsgrad=True, maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.9, step_size=10), |
| lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_complex_2d(optimizer) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): |
| optimizer(None, lr=1e-2, betas=(1.0, 0.0)) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): |
| optimizer(None, lr=1e-2, weight_decay=-1) |
| |
| def test_adamw(self): |
| for optimizer in [optim.AdamW, optim_mt.AdamW]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, weight_decay=1, amsgrad=True, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): |
| optimizer(None, lr=1e-2, weight_decay=-1) |
| |
| def test_sparse_adam(self): |
| self._test_rosenbrock_sparse( |
| lambda params: optim.SparseAdam(params, lr=4e-2), |
| [], |
| True |
| ) |
| self._test_rosenbrock_sparse( |
| lambda params: optim.SparseAdam(params, lr=4e-2, maximize=True), |
| [], |
| True, |
| True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): |
| optim.SparseAdam(None, lr=1e-2, betas=(1.0, 0.0)) |
| with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"): |
| optim.SparseAdam([torch.zeros(3, layout=torch.sparse_coo)]) |
| with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"): |
| optim.SparseAdam([{"params": [torch.zeros(3, layout=torch.sparse_coo)]}]) |
| |
| # ROCm precision is too low to pass this test |
| def test_adadelta(self): |
| # Handles https://github.com/pytorch/pytorch/issues/69698 |
| self.rel_tol = 4e-3 |
| for optimizer in [optim.Adadelta, optim_mt.Adadelta]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, rho=0.95), maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, rho=0.95), maximize=maximize), |
| [lambda opt: StepLR(opt, gamma=0.9, step_size=10), |
| lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid rho value: 1.1"): |
| optimizer(None, lr=1e-2, rho=1.1) |
| |
| def test_adadelta_complex(self): |
| # Handles https://github.com/pytorch/pytorch/issues/69698 |
| self.rel_tol = 2e-2 |
| for optimizer in [optim.Adadelta]: |
| self._test_complex_optimizer( |
| lambda weight: optimizer([weight]) |
| ) |
| self._test_complex_optimizer( |
| lambda weight: optimizer([weight], rho=0.95) |
| ) |
| self._test_complex_optimizer( |
| lambda weight: optimizer([weight], rho=0.95, weight_decay=1) |
| ) |
| |
| def test_nadam(self): |
| for optimizer in [optim.NAdam, optim_mt.NAdam]: |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3), |
| [lambda opt: ExponentialLR(opt, gamma=0.9)] |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): |
| optimizer(None, lr=1e-2, betas=(1.0, 0.0)) |
| with self.assertRaisesRegex(ValueError, "Invalid momentum_decay value: -0.2"): |
| optimizer(None, lr=1e-2, momentum_decay=-0.2) |
| |
| def test_adagrad(self): |
| for optimizer in [optim.Adagrad, optim_mt.Adagrad]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| [weight, bias], lr=1e-1, initial_accumulator_value=0.1, maximize=maximize, |
| ), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-1, |
| maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-1, |
| maximize=maximize), |
| [lambda opt: ReduceLROnPlateau(opt)], |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-1, |
| maximize=maximize), |
| [lambda opt: ReduceLROnPlateau(opt), |
| lambda opt: ExponentialLR(opt, gamma=0.99)], |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid lr_decay value: -0.5"): |
| optimizer(None, lr=1e-2, lr_decay=-0.5) |
| |
| def test_adagrad_sparse(self): |
| for optimizer in [optim.Adagrad, optim_mt.Adagrad]: |
| self._test_rosenbrock_sparse( |
| lambda params: optimizer(params, lr=1e-1) |
| ) |
| self._test_rosenbrock_sparse( |
| lambda params: optimizer(params, lr=0.1), |
| [lambda opt: StepLR(opt, gamma=1 - 1e-5, step_size=500), |
| lambda opt: ReduceLROnPlateau(opt, threshold=1e-4)] |
| ) |
| |
| def test_adagrad_complex(self): |
| for optimizer in [optim.Adagrad, optim_mt.Adagrad]: |
| self._test_complex_optimizer( |
| lambda param: optimizer([param], lr=1e-1) |
| ) |
| self._test_complex_optimizer( |
| lambda param: optimizer( |
| [param], lr=1e-1, initial_accumulator_value=0.1 |
| ) |
| ) |
| |
| def test_adamax(self): |
| for optimizer in [optim.Adamax, optim_mt.Adamax]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| [weight, bias], lr=1e-1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| [weight, bias], lr=1e-1, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 1: 1.0"): |
| optimizer(None, lr=1e-2, betas=(0.0, 1.0)) |
| |
| def test_radam(self): |
| for optimizer in [optim.RAdam, optim_mt.RAdam]: |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=0.1) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3), |
| [lambda opt: ExponentialLR(opt, gamma=0.9), |
| lambda opt: ReduceLROnPlateau(opt)] |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): |
| optimizer(None, lr=1e-2, betas=(1.0, 0.0)) |
| |
| with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): |
| optimizer(None, lr=1e-2, weight_decay=-1) |
| |
| def test_rmsprop(self): |
| for optimizer in [optim.RMSprop, optim_mt.RMSprop]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-2, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-3), |
| lr=1e-2, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-3), |
| lr=1e-2, centered=True, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-3), |
| lr=1e-2, centered=True, momentum=0.1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-3), |
| lr=1e-2, momentum=0.1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-3), |
| lr=1e-2, momentum=0.1, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid momentum value: -1.0"): |
| optimizer(None, lr=1e-2, momentum=-1.0) |
| |
| def test_asgd(self): |
| for optimizer in [optim.ASGD, optim_mt.ASGD]: |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer([weight, bias], lr=1e-3, t0=100, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, t0=100, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias, maximize: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3, weight_decay=1, maximize=maximize), |
| constructor_accepts_maximize=True |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -0.5"): |
| optimizer(None, lr=1e-2, weight_decay=-0.5) |
| |
| def test_rprop(self): |
| for optimizer in [optim.Rprop, optim_mt.Rprop]: |
| self._test_basic_cases( |
| lambda weight, bias: optimizer([weight, bias], lr=1e-3) |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optimizer( |
| self._build_params_dict(weight, bias, lr=1e-2), |
| lr=1e-3) |
| ) |
| with self.assertRaisesRegex(ValueError, "Invalid eta values: 1.0, 0.5"): |
| optimizer(None, lr=1e-2, etas=(1.0, 0.5)) |
| |
| def test_lbfgs(self): |
| self._test_basic_cases( |
| lambda weight, bias: optim.LBFGS([weight, bias]), |
| ignore_multidevice=True |
| ) |
| self._test_basic_cases( |
| lambda weight, bias: optim.LBFGS([weight, bias], line_search_fn="strong_wolfe"), |
| ignore_multidevice=True |
| ) |
| |
| @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") |
| def test_lbfgs_return_type(self): |
| params = [torch.randn(10, 5), torch.randn(10)] |
| opt1 = optim.LBFGS(params, 0.01, tolerance_grad=inf) |
| opt2 = optim.LBFGS(params, 0.01, tolerance_grad=-inf) |
| |
| def closure(): |
| return torch.tensor([10]) |
| |
| res1 = opt1.step(closure) |
| res2 = opt2.step(closure) |
| self.assertEqual(type(res1), type(res2)) |
| |
| def test_invalid_param_type(self): |
| with self.assertRaises(TypeError): |
| optim.SGD(Variable(torch.randn(5, 5)), lr=3) |
| |
| def test_duplicate_params_in_param_group(self): |
| param = Variable(torch.randn(5, 5)) |
| with warnings.catch_warnings(record=True) as w: |
| warnings.simplefilter("always") |
| optim.SGD([param, param], lr=0.1) |
| self.assertEqual(len(w), 1) |
| self.assertIn('a parameter group with duplicate parameters', str(w[0].message)) |
| |
| def test_no_grad_for_all_params(self): |
| params = [torch.randn(5, 5, requires_grad=False) for _ in range(2)] |
| |
| optimizer_list = [ |
| optim.Adadelta, |
| optim.AdamW, |
| optim.Adam, |
| optim.Adagrad, |
| optim.Adamax, |
| optim.RMSprop, |
| optim.SGD, |
| optim.SparseAdam, |
| optim.ASGD, |
| ] |
| for optim_ctr in optimizer_list: |
| opt = optim_ctr(params, lr=0.1) |
| # make sure step can still run even if |
| # all params have no grad |
| opt.step() |
| |
| |
| class SchedulerTestNet(torch.nn.Module): |
| def __init__(self): |
| super(SchedulerTestNet, self).__init__() |
| self.conv1 = torch.nn.Conv2d(1, 1, 1) |
| self.conv2 = torch.nn.Conv2d(1, 1, 1) |
| |
| def forward(self, x): |
| return self.conv2(F.relu(self.conv1(x))) |
| |
| |
| class LambdaLRTestObject: |
| def __init__(self, value): |
| self.value = value |
| |
| def __call__(self, epoch): |
| return self.value * epoch |
| |
| def __eq__(self, other): |
| if isinstance(other, self.__class__): |
| return self.__dict__ == other.__dict__ |
| else: |
| return False |
| |
| |
| class TestLRScheduler(TestCase): |
| exact_dtype = True |
| |
| def setUp(self): |
| super(TestLRScheduler, self).setUp() |
| self.net = SchedulerTestNet() |
| self.opt = SGD( |
| [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], |
| lr=0.05) |
| |
| def _check_warning_is_epoch_deprecation_warning(self, w, *, num_warnings: int = 1): |
| """This function swallows the epoch deprecation warning which is produced when we |
| call `scheduler.step(epoch)` with some not `None` value of `epoch`. |
| this is deprecated, and this function will need to be removed/updated when |
| the schedulers no longer accept the parameter at all. |
| """ |
| self.assertEqual(len(w), num_warnings) |
| for warning in w: |
| self.assertEqual(len(warning.message.args), 1) |
| self.assertEqual(warning.message.args[0], EPOCH_DEPRECATION_WARNING) |
| |
| def test_error_when_getlr_has_epoch(self): |
| class MultiStepLR(torch.optim.lr_scheduler._LRScheduler): |
| def __init__(self, optimizer, gamma, milestones, last_epoch=-1): |
| self.init_lr = [group['lr'] for group in optimizer.param_groups] |
| self.gamma = gamma |
| self.milestones = milestones |
| super().__init__(optimizer, last_epoch) |
| |
| def get_lr(self, step): |
| global_step = self.last_epoch |
| gamma_power = ([0] + [i + 1 for i, m in enumerate(self.milestones) if global_step >= m])[-1] |
| return [init_lr * (self.gamma ** gamma_power) for init_lr in self.init_lr] |
| |
| optimizer = torch.optim.SGD([torch.rand(1)], lr=1) |
| |
| with self.assertRaises(TypeError): |
| scheduler = MultiStepLR(optimizer, gamma=1, milestones=[10, 20]) |
| |
| def test_no_cyclic_references(self): |
| import gc |
| param = Variable(torch.empty(10), requires_grad=True) |
| optim = SGD([param], lr=0.5) |
| scheduler = LambdaLR(optim, lambda epoch: 1.0) |
| del scheduler |
| |
| # Prior to Python 3.7, local variables in a function will be referred by the current frame. |
| import sys |
| if sys.version_info < (3, 7): |
| import inspect |
| referrers = gc.get_referrers(optim) |
| self.assertTrue( |
| len(referrers) == 1 and referrers[0] is inspect.currentframe(), |
| "Optimizer should contain no cyclic references (except current frame)") |
| del referrers |
| else: |
| self.assertTrue( |
| len(gc.get_referrers(optim)) == 0, |
| "Optimizer should contain no cyclic references") |
| |
| gc.collect() |
| del optim |
| self.assertEqual( |
| gc.collect(), 0, msg="Optimizer should be garbage-collected on __del__") |
| |
| def test_old_pattern_warning(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern) |
| |
| def test_old_pattern_warning_with_arg(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) |
| |
| def test_old_pattern_warning_resuming(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group['initial_lr'] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern) |
| |
| def test_old_pattern_warning_resuming_with_arg(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group['initial_lr'] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) |
| |
| def test_old_pattern_warning_with_overridden_optim_step(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group['initial_lr'] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| # emulate use-case with optimizer.step overridden |
| import types |
| |
| old_step = self.opt.step |
| |
| def new_step(o, *args, **kwargs): |
| retval = old_step(*args, **kwargs) |
| return retval |
| |
| self.opt.step = types.MethodType(new_step, self.opt) |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) |
| |
| def test_new_pattern_no_warning(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| for _ in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def test_new_pattern_no_warning_with_arg(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| for _ in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def test_new_pattern_no_warning_with_overridden_optim_step(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| # emulate use-case with optimizer.step overridden |
| import types |
| |
| old_step = self.opt.step |
| |
| def new_step(o, *args, **kwargs): |
| retval = old_step(*args, **kwargs) |
| return retval |
| |
| self.opt.step = types.MethodType(new_step, self.opt) |
| |
| def new_pattern(): |
| for e in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| |
| self.assertWarnsRegex(UserWarning, r'`optimizer.step\(\)` has been overridden', new_pattern) |
| |
| def _test_lr_is_constant_for_constant_epoch(self, scheduler): |
| l = [] |
| |
| for _ in range(10): |
| scheduler.optimizer.step() |
| with warnings.catch_warnings(record=True) as w: |
| scheduler.step(2) |
| self._check_warning_is_epoch_deprecation_warning(w) |
| |
| l.append(self.opt.param_groups[0]['lr']) |
| self.assertEqual(min(l), max(l)) |
| |
| def test_step_lr_is_constant_for_constant_epoch(self): |
| scheduler = StepLR(self.opt, 2) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_exponential_lr_is_constant_for_constant_epoch(self): |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_constantlr_is_constant_for_constant_epoch(self): |
| scheduler = ConstantLR(self.opt) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_linear_linearlr_is_constant_for_constant_epoch(self): |
| scheduler = LinearLR(self.opt) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_step_lr(self): |
| # lr = 0.05 if epoch < 3 |
| # lr = 0.005 if 30 <= epoch < 6 |
| # lr = 0.0005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test(scheduler, targets, epochs) |
| |
| def test_get_last_lr_step_lr(self): |
| from torch.nn import Parameter |
| epochs = 10 |
| optimizer = torch.optim.SGD([Parameter(torch.randn(2, 2, requires_grad=True))], 0.1) |
| targets = [[0.1] * 3 + [0.01] * 3 + [0.001] * 3 + [0.0001]] |
| scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 3, gamma=0.1) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_get_last_lr_multi_step_lr(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if 5 <= epoch < 9 |
| # lr = 0.00005 if 9 <= epoch |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 1 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_multi_step_lr(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if epoch < 9 |
| # lr = 0.00005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test(scheduler, targets, epochs) |
| |
| def test_multi_step_lr_with_epoch(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if epoch < 9 |
| # lr = 0.00005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_get_last_lr_constantlr(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_get_last_lr_linearlr(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 4 |
| end_factor = 3. / 5 |
| iters = 4 |
| interpolation = [start_factor + i * (end_factor - start_factor) / iters for i in range(iters)] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05 * end_factor] * (epochs - iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR(self.opt, start_factor=start_factor, end_factor=end_factor, total_iters=iters) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_constantlr(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test(scheduler, targets, epochs) |
| |
| def test_linearlr(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 2 |
| iters = 4 |
| interpolation = [start_factor + i * (1 - start_factor) / iters for i in range(iters)] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test(scheduler, targets, epochs) |
| |
| def test_constantlr_with_epoch(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_linearlr_with_epoch(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 2 |
| end_factor = 1. |
| iters = 4 |
| interpolation = [start_factor + i * (end_factor - start_factor) / iters for i in range(iters)] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_exp_lr(self): |
| epochs = 10 |
| single_targets = [0.05 * (0.9 ** x) for x in range(epochs)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test(scheduler, targets, epochs) |
| |
| def test_cos_anneal_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| self._test(scheduler, targets, epochs) |
| |
| def test_closed_form_step_lr(self): |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| closed_form_scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_linearlr(self): |
| scheduler = LinearLR(self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4) |
| closed_form_scheduler = LinearLR(self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_constantlr(self): |
| scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4) |
| closed_form_scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_multi_step_lr(self): |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| closed_form_scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_exp_lr(self): |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| closed_form_scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_cos_anneal_lr(self): |
| eta_min = 1e-10 |
| epochs = 20 |
| T_max = 5 |
| scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) |
| closed_form_scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, epochs) |
| |
| def test_cos_anneal_lr_continue(self): |
| eta_min = 0.1 |
| T_max = 5 |
| scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) |
| self.opt.step() |
| scheduler.step() |
| original_lrs = scheduler._last_lr |
| new_scheduler = CosineAnnealingLR( |
| self.opt, T_max=T_max, eta_min=eta_min, last_epoch=0) |
| new_lrs = new_scheduler._last_lr |
| torch.testing.assert_allclose(original_lrs, new_lrs, rtol=1e-4, atol=1e-5) |
| |
| def test_reduce_lr_on_plateau1(self): |
| epochs = 10 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [10 - i * 0.0167 for i in range(20)] |
| scheduler = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min', |
| threshold=0.01, patience=5, cooldown=5) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau2(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2] |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| scheduler = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs', |
| mode='min', threshold=0.1) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau3(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [-0.8] * 2 + [-0.234] * 20 |
| scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5, |
| threshold_mode='abs') |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau4(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25 |
| scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=3, |
| threshold_mode='rel', threshold=0.1) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau5(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [1.5 * (1.005 ** i) for i in range(20)] |
| scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', |
| threshold=0.1, patience=5, cooldown=5) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau6(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [1.5 * (0.85 ** i) for i in range(20)] |
| scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel', |
| threshold=0.1) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau7(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [1] * 7 + [0.6] + [0.5] * 12 |
| scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel', |
| threshold=0.1, patience=5, cooldown=5) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau8(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14] |
| metrics = [1.5 * (1.005 ** i) for i in range(20)] |
| scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', min_lr=[0.4, 0.3], |
| threshold=0.1, patience=5, cooldown=5) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_sequentiallr1(self): |
| epochs = 19 |
| schedulers = [None] * 2 |
| targets = [[0.05, 0.04, 0.032] + [0.05 for x in range(4)] |
| + [0.05 * 0.1 for x in range(4)] |
| + [0.05 * 0.01 for x in range(4)] |
| + [0.05 * 0.001 for x in range(4)]] |
| milestones = [3] |
| schedulers[0] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=4) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr2(self): |
| epochs = 13 |
| schedulers = [None] * 2 |
| targets = [[0.005, 0.005, 0.005] + [0.05 * 0.9 ** x for x in range(10)]] |
| milestones = [3] |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr3(self): |
| epochs = 12 |
| schedulers = [None] * 3 |
| targets = [[0.005, 0.005, 0.005] + [0.05, 0.04, 0.032] |
| + [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005]] |
| milestones = [3, 6] |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr4(self): |
| optimizer = torch.optim.SGD([torch.tensor(0.5)], lr=0.1) |
| prev_lr = optimizer.param_groups[0]["lr"] |
| |
| schedulers = [ |
| torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1), |
| torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.1) |
| ] |
| scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers, milestones=[10]) |
| |
| new_lr = optimizer.param_groups[0]["lr"] |
| |
| # Ensure that multiple schedulers does not affect the initial learning rate |
| self.assertEqual(prev_lr, new_lr) |
| |
| def test_get_last_lr_sequentiallr(self): |
| epochs = 12 |
| milestones = [3, 6] |
| schedulers = [None] * 3 |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| constant_lr_target = [0.005] * 3 |
| exponential_lr_target = [0.05, 0.04, 0.032] |
| step_lr_target = [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005] |
| single_targets = constant_lr_target + exponential_lr_target + step_lr_target |
| targets = [single_targets, [x * 10 for x in single_targets]] |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_chained_lr2_get_last_lr_before_step(self): |
| schedulers = [ |
| LinearLR(self.opt, start_factor=0.4, total_iters=3), |
| MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1) |
| ] |
| scheduler = ChainedScheduler(schedulers) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr1(self): |
| epochs = 10 |
| schedulers = [None] * 1 |
| targets = [[0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr2(self): |
| epochs = 10 |
| schedulers = [None] * 1 |
| targets = [[0.02, 0.03, 0.04] + [0.05] * 9] |
| schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr3(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| targets = [[0.02, 0.03, 0.04, 0.05] + [0.005] * 4 + [0.0005] * 3 + [0.00005] * 3] |
| schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3) |
| schedulers[1] = MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr4(self): |
| epochs = 9 |
| schedulers = [None] * 3 |
| targets = [[0.05 * 0.2 * 0.9 ** x for x in range(3)] |
| + [0.05 * 0.2 * 0.9 ** 3 * 0.1] |
| + [0.05 * 0.9 ** x * 0.1 for x in range(4, 6)] |
| + [0.05 * 0.9 ** x * 0.01 for x in range(6, 9)]] |
| schedulers[0] = ExponentialLR(self.opt, gamma=0.9) |
| schedulers[1] = ConstantLR(self.opt, factor=0.2, total_iters=4) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_compound_step_and_multistep_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| targets = [[0.05] * 2 + [0.005] * 1 + [5e-4] * 2 + [5e-5] + [5e-6] * 3 + [5e-8]] |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_step_and_exp_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9 ** x) for x in range(3)] |
| single_targets += [0.005 * (0.9 ** x) for x in range(3, 6)] |
| single_targets += [0.0005 * (0.9 ** x) for x in range(6, 9)] |
| single_targets += [0.00005 * (0.9 ** x) for x in range(9, 12)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_exp_and_multistep_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9 ** x) for x in range(2)] |
| single_targets += [0.005 * (0.9 ** x) for x in range(2, 5)] |
| single_targets += [0.0005 * (0.9 ** x) for x in range(5, 9)] |
| single_targets += [0.00005 * (0.9 ** x) for x in range(9, 11)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_exp_and_linearlr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| end_factor = 0.9 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9 ** x) for x in range(11)] |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (end_factor - start_factor) |
| for i in range(iters, 11): |
| single_targets[i] *= end_factor |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = LinearLR(self.opt, start_factor=start_factor, end_factor=end_factor, total_iters=iters) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_step_and_constantlr(self): |
| epochs = 10 |
| iters = 4 |
| factor = 0.4 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * 0.4] * 3 + [0.005 * 0.4] + [0.005] * 2 + [0.0005] * 3 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = ConstantLR(self.opt, factor=0.4, total_iters=4) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_linearlr_and_multistep_lr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| schedulers = [None] * 2 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 2 |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (1 - start_factor) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_step_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| single_targets = [x * 0.1 ** (i // 3) for i, x in enumerate(single_targets)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_multistep_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| multipliers = [1] * 2 + [0.1] * 3 + [0.01] * 4 + [0.001] |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_linearlr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| eta_min = 1e-10 |
| schedulers = [None] * 2 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (1 - start_factor) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| schedulers[1] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_exp_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| multipliers = [0.1 ** i for i in range(epochs)] |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.1) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_reduce_lr_on_plateau1(self): |
| epochs = 10 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| single_targets = [0.5] * 20 |
| multipliers = [0.1 ** (i // 3) for i in range(20)] |
| single_targets = [x * y for x, y in zip(multipliers, single_targets)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0167 for i in range(20)] |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min', |
| threshold=0.01, patience=5, cooldown=5) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau2(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2 |
| multipliers = [1] * 3 + [0.1] * 5 + [0.01] * 4 + [0.001] * 10 |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| schedulers = [None] * 2 |
| schedulers[0] = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs', |
| mode='min', threshold=0.1) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[3, 8, 12]) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau3(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| single_targets = [0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4 |
| multipliers = [0.1 ** i for i in range(epochs)] |
| single_targets = [x * y for x, y in zip(multipliers, single_targets)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [-0.8] * 2 + [-0.234] * 20 |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5, |
| threshold_mode='abs') |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.1) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau4(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.05 |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [eta_min + (0.05 - eta_min) * |
| (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25 |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=3, |
| threshold_mode='rel', threshold=0.1) |
| schedulers[1] = CosineAnnealingLR(self.opt, epochs, eta_min) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau5(self): |
| iters = 4 |
| start_factor = 0.4 |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group['lr'] = 0.5 |
| single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2 |
| multipliers = [1] * 22 |
| for i in range(iters): |
| multipliers[i] *= start_factor + i / iters * (1 - start_factor) |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| schedulers = [None] * 2 |
| schedulers[0] = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs', |
| mode='min', threshold=0.1) |
| schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_cycle_lr_invalid_mode(self): |
| with self.assertRaises(ValueError): |
| scheduler = CyclicLR(self.opt, base_lr=0, max_lr=0, mode="CATS") |
| |
| def test_cycle_lr_triangular_mode_one_lr(self): |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| momentum_target = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, |
| cycle_momentum=True, base_momentum=1, max_momentum=5, |
| mode='triangular') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular_mode_one_lr_no_momentum(self): |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [self.opt.defaults['momentum']] * len(lr_target) |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, |
| cycle_momentum=False, mode='triangular') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular2_mode_one_lr(self): |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5, |
| 1, 1.25, 1.50, 1.75, 2.00, 1.75] |
| momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, |
| 3.5, 3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, |
| cycle_momentum=True, base_momentum=1, max_momentum=5, |
| mode='triangular2') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_exp_range_mode_one_lr(self): |
| base_lr, max_lr = 1, 5 |
| diff_lr = max_lr - base_lr |
| gamma = 0.9 |
| xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] |
| lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=base_lr, |
| max_lr=max_lr, step_size_up=4, |
| cycle_momentum=True, base_momentum=base_lr, max_momentum=max_lr, |
| mode='exp_range', gamma=gamma) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular_mode(self): |
| lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_target_2 = [x + 1 for x in lr_target_1] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] |
| momentum_target_2 = [x + 1 for x in momentum_target_1] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR(self.opt, base_lr=[1, 2], max_lr=[5, 6], step_size_up=4, |
| cycle_momentum=True, base_momentum=[1, 2], max_momentum=[5, 6], |
| mode='triangular') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_triangular2_mode(self): |
| lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5, 1, |
| 1.25, 1.50, 1.75, 2.00, 1.75] |
| lr_target_2 = [x + 2 for x in lr_target_1] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.5, |
| 3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25] |
| momentum_target_2 = [x + 2 for x in momentum_target_1] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR(self.opt, base_lr=[1, 3], max_lr=[5, 7], step_size_up=4, |
| cycle_momentum=True, base_momentum=[1, 3], max_momentum=[5, 7], |
| mode='triangular2') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_exp_range_mode(self): |
| base_lr_1, max_lr_1 = 1, 5 |
| base_lr_2, max_lr_2 = 5, 12 |
| |
| diff_lr_1 = max_lr_1 - base_lr_1 |
| diff_lr_2 = max_lr_2 - base_lr_2 |
| |
| gamma = 0.9 |
| xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] |
| lr_target_1 = [base_lr_1 + x * diff_lr_1 * gamma**i for i, x in enumerate(xs)] |
| lr_target_2 = [base_lr_2 + x * diff_lr_2 * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [max_lr_1 - x * diff_lr_1 * gamma**i for i, x in enumerate(xs)] |
| momentum_target_2 = [max_lr_2 - x * diff_lr_2 * gamma**i for i, x in enumerate(xs)] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR(self.opt, base_lr=[base_lr_1, base_lr_2], |
| max_lr=[max_lr_1, max_lr_2], step_size_up=4, |
| cycle_momentum=True, base_momentum=[base_lr_1, base_lr_2], |
| max_momentum=[max_lr_1, max_lr_2], |
| mode='exp_range', gamma=gamma) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_triangular_mode_step_size_up_down(self): |
| lr_target = [1.0, 2.0, 3.0, 4.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0] |
| momentum_targets = [momentum_target, momentum_target] |
| |
| scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, |
| step_size_up=4, |
| step_size_down=6, |
| cycle_momentum=True, |
| base_momentum=1, max_momentum=5, |
| mode='triangular') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular2_mode_step_size_up_down(self): |
| lr_base_target = ([ |
| 1.0, 3.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0, 2.0, 3.0, 8.0 / 3, |
| 7.0 / 3, 6.0 / 3, 5.0 / 3, 4.0 / 3, 1.0, 3.0 / 2, 2.0, 11.0 / 6, 10.0 / 6, 9.0 / 6, |
| 8.0 / 6, 7.0 / 6 |
| ]) |
| momentum_base_target = ([ |
| 5.0, 3.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0, 4.0, 3.0, 10.0 / 3, |
| 11.0 / 3, 4.0, 13.0 / 3, 14.0 / 3, 5.0, 4.5, 4.0, 25.0 / 6, 13.0 / 3, 4.5, 14.0 / 3, |
| 29.0 / 6 |
| ]) |
| deltas = [2 * i for i in range(0, 2)] |
| base_lrs = [1 + delta for delta in deltas] |
| max_lrs = [5 + delta for delta in deltas] |
| lr_targets = [[x + delta for x in lr_base_target] for delta in deltas] |
| momentum_targets = [[x + delta for x in momentum_base_target] for delta in deltas] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=base_lrs, |
| max_lr=max_lrs, |
| step_size_up=2, |
| step_size_down=6, |
| cycle_momentum=True, |
| base_momentum=base_lrs, |
| max_momentum=max_lrs, |
| mode='triangular2') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_base_target)) |
| |
| def test_cycle_lr_exp_range_mode_step_size_up_down(self): |
| base_lr, max_lr = 1, 5 |
| diff_lr = max_lr - base_lr |
| gamma = 0.9 |
| xs = ([ |
| 0.0, 0.5, 1.0, 5.0 / 6, 4.0 / 6, 3.0 / 6, 2.0 / 6, 1.0 / 6, 0.0, 0.5, 1.0, 5.0 / 6, |
| 4.0 / 6 |
| ]) |
| lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=base_lr, max_lr=max_lr, |
| step_size_up=2, step_size_down=6, |
| cycle_momentum=True, base_momentum=base_lr, |
| max_momentum=max_lr, |
| mode='exp_range', gamma=gamma) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_with_momentumless_optimizer(self): |
| # Note [Temporarily set optimizer to Adam] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # The TestLRScheduler object carries around an SGD optimizer to avoid having to |
| # instantiate one for every test. This gets in the way for our very specific case |
| # in which we need to use Adam (or really any optimizer that doesn't use momentum) |
| # in order to test that the momentum bug in CyclicLR is fixed (the bug is described |
| # in more detail in https://github.com/pytorch/pytorch/issues/19003 ). |
| old_opt = self.opt |
| self.opt = optim.Adam( |
| [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], |
| lr=0.05) |
| |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [None] * len(lr_target) |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, |
| cycle_momentum=False, mode='triangular') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| self.opt = old_opt # set optimizer back to SGD |
| |
| def test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer(self): |
| with self.assertRaises(ValueError): |
| adam_opt = optim.Adam(self.net.parameters()) |
| scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=True) |
| |
| def test_onecycle_lr_invalid_anneal_strategy(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, anneal_strategy="CATS") |
| |
| def test_onecycle_lr_invalid_pct_start(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, pct_start=1.1) |
| |
| def test_onecycle_lr_cannot_calculate_total_steps(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR(self.opt, max_lr=1e-3) |
| |
| def test_onecycle_lr_linear_annealing(self): |
| lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] |
| momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, |
| total_steps=10, anneal_strategy='linear') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_onecycle_lr_linear_annealing_three_phases(self): |
| lr_target = [1, 9, 17, 25, 17, 9, 1, 0.75, 0.5, 0.25] |
| momentum_target = [22, 15, 8, 1, 8, 15, 22, 22, 22, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR(self.opt, max_lr=25, div_factor=25, |
| base_momentum=1, max_momentum=22, |
| total_steps=10, anneal_strategy='linear', |
| pct_start=0.4, final_div_factor=4, |
| three_phase=True) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_onecycle_lr_cosine_annealing(self): |
| def annealing_cos(start, end, pct): |
| cos_out = math.cos(math.pi * pct) + 1 |
| return end + (start - end) / 2.0 * cos_out |
| lr_target = [1, 13, 25, annealing_cos(25, 0.5, 1 / 7.0), annealing_cos(25, 0.5, 2 / 7.0), |
| annealing_cos(25, 0.5, 3 / 7.0), annealing_cos(25, 0.5, 4 / 7.0), annealing_cos(25, 0.5, 5 / 7.0), |
| annealing_cos(25, 0.5, 6 / 7.0), 0.5] |
| momentum_target = [22, 11.5, 1, annealing_cos(1, 22, 1 / 7.0), annealing_cos(1, 22, 2 / 7.0), |
| annealing_cos(1, 22, 3 / 7.0), annealing_cos(1, 22, 4 / 7.0), annealing_cos(1, 22, 5 / 7.0), |
| annealing_cos(1, 22, 6 / 7.0), 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, |
| total_steps=10) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_cycle_lr_with_adam(self): |
| old_opt = self.opt |
| self.opt = optim.Adam( |
| [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], |
| lr=0.05) |
| |
| lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] |
| momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, |
| total_steps=10, anneal_strategy='linear') |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10, use_beta1=True) |
| self.opt = old_opt # set optimizer back to SGD |
| |
| def test_lambda_lr(self): |
| epochs = 10 |
| self.opt.param_groups[0]['lr'] = 0.05 |
| self.opt.param_groups[1]['lr'] = 0.4 |
| targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]] |
| scheduler = LambdaLR(self.opt, |
| lr_lambda=[lambda x1: 0.9 ** x1, lambda x2: 0.8 ** x2]) |
| self._test(scheduler, targets, epochs) |
| |
| def test_multiplicative_lr(self): |
| epochs = 10 |
| self.opt.param_groups[0]['lr'] = 0.05 |
| self.opt.param_groups[1]['lr'] = 0.4 |
| targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]] |
| scheduler = MultiplicativeLR(self.opt, lr_lambda=[lambda x1: 0.9, lambda x2: 0.8]) |
| self._test(scheduler, targets, epochs) |
| |
| @parametrize("T_mult", [1, 2, 4]) |
| def test_CosineAnnealingWarmRestarts_lr1(self, T_mult): |
| iters = 100 |
| eta_min = 1e-10 |
| T_i = 10 |
| T_cur = 0 |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min) |
| for _ in range(1, iters, 1): |
| T_cur += 1 |
| if T_cur >= T_i: |
| T_cur = T_cur - T_i |
| T_i = int(T_mult) * T_i |
| targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| self._test(scheduler, targets, iters) |
| |
| def test_CosineAnnealingWarmRestarts_lr2(self): |
| iters = 30 |
| eta_min = 1e-10 |
| T_mults = [1, 2, 4] |
| for T_mult in T_mults: |
| T_i = 10 |
| T_cur = 0 |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min) |
| for _ in torch.arange(0.1, iters, 0.1): |
| T_cur = round(T_cur + 0.1, 1) |
| if T_cur >= T_i: |
| T_cur = T_cur - T_i |
| T_i = int(T_mult) * T_i |
| targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| self._test_CosineAnnealingWarmRestarts(scheduler, targets, iters) |
| |
| def test_CosineAnnealingWarmRestarts_lr3(self): |
| epochs_for_T_mults = [[0, 1, 2, 3, 4, 5, 12, 27, 3, 4, 5, 6, 13], |
| [0, 1, 2, 3, 4, 5, 25, 32, 33, 34, 80, 81, 3], |
| [0, 0.1, 0.2, 0.3, 1.3, 2.3, 17.5, 18.5, 19.5, 29.5, 30.5, 31.5, 50]] |
| T_curs_for_T_mults = [[1, 2, 3, 4, 5, 2, 7, 3, 4, 5, 6, 3], |
| [1, 2, 3, 4, 5, 15, 2, 3, 4, 10, 11, 3], |
| [0.1, 0.2, 0.3, 1.3, 2.3, 7.5, 8.5, 9.5, 19.5, 20.5, 21.5, 10]] |
| T_is_for_T_mults = [[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
| [10, 10, 10, 10, 10, 20, 40, 40, 40, 80, 80, 10], |
| [10, 10, 10, 10, 10, 30, 30, 30, 30, 30, 30, 90]] |
| eta_min = 1e-10 |
| T_mults = [1, 2, 3] |
| for epochs, T_mult, T_curs, T_is in zip(epochs_for_T_mults, T_mults, T_curs_for_T_mults, T_is_for_T_mults): |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=T_mult, eta_min=eta_min) |
| for T_cur, T_i in zip(T_curs, T_is): |
| targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] |
| self._test_interleaved_CosineAnnealingWarmRestarts(scheduler, targets, epochs) |
| |
| def test_swalr_no_anneal(self): |
| epochs, swa_start, swa_lr = 10, 5, 0.01 |
| initial_lrs = [group['lr'] for group in self.opt.param_groups] |
| targets = [[lr] * (swa_start + 1) + [swa_lr] * (epochs - swa_start - 1) |
| for lr in initial_lrs] |
| swa_scheduler = SWALR(self.opt, anneal_epochs=1, swa_lr=swa_lr) |
| self._test_swalr(swa_scheduler, None, targets, swa_start, epochs) |
| |
| def test_swalr_cosine_anneal_after_multiplicative(self): |
| # same swa_lr for different param_groups |
| epochs, swa_start, swa_lr, anneal_epochs = 15, 5, 0.01, 5 |
| mult_factor = 0.9 |
| scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) |
| swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, swa_lr=swa_lr) |
| |
| def anneal_coef(t): |
| if t + 1 >= anneal_epochs: |
| return 0. |
| return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2 |
| |
| initial_lrs = [group['lr'] for group in self.opt.param_groups] |
| targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)] |
| for lr in initial_lrs] |
| swa_epochs = epochs - swa_start - 1 |
| targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)] |
| for lrs in targets_before_swa] |
| |
| self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) |
| |
| def test_swalr_linear_anneal_after_multiplicative(self): |
| # separate swa_lr for different param_groups |
| epochs, swa_start, swa_lrs, anneal_epochs = 15, 5, [0.01, 0.02], 4 |
| mult_factor = 0.9 |
| scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) |
| swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, |
| anneal_strategy="linear", swa_lr=swa_lrs) |
| |
| def anneal_coef(t): |
| if t + 1 >= anneal_epochs: |
| return 0. |
| return 1 - (t + 1) / anneal_epochs |
| |
| initial_lrs = [group['lr'] for group in self.opt.param_groups] |
| targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)] |
| for lr in initial_lrs] |
| swa_epochs = epochs - swa_start - 1 |
| targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)] |
| for lrs, swa_lr in zip(targets_before_swa, swa_lrs)] |
| |
| self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) |
| |
| def _test_swalr(self, swa_scheduler, scheduler, targets, swa_start, epochs): |
| for epoch in range(epochs): |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[epoch], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) |
| if epoch >= swa_start: |
| self.opt.step() |
| swa_scheduler.step() |
| elif scheduler is not None: |
| self.opt.step() |
| scheduler.step() |
| |
| def test_swalr_hypers(self): |
| # Test that SWALR raises errors for incorrect hyper-parameters |
| with self.assertRaisesRegex(ValueError, "anneal_strategy must"): |
| swa_scheduler = SWALR(self.opt, anneal_strategy="exponential", swa_lr=1.) |
| |
| with self.assertRaisesRegex(ValueError, "anneal_epochs must"): |
| swa_scheduler = SWALR(self.opt, anneal_epochs=-1, swa_lr=1.) |
| with self.assertRaisesRegex(ValueError, "anneal_epochs must"): |
| swa_scheduler = SWALR(self.opt, anneal_epochs=1.7, swa_lr=1.) |
| with self.assertRaisesRegex(ValueError, "swa_lr must"): |
| swa_scheduler = SWALR(self.opt, swa_lr=[1., 0.1, 0.01]) |
| |
| def test_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: StepLR(self.opt, gamma=0.1, step_size=3), |
| lambda: StepLR(self.opt, gamma=0.01 / 2, step_size=1)) |
| |
| def test_multi_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]), |
| lambda: MultiStepLR(self.opt, gamma=0.01, milestones=[1, 4, 6])) |
| |
| def test_exp_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: ExponentialLR(self.opt, gamma=0.1), |
| lambda: ExponentialLR(self.opt, gamma=0.01)) |
| |
| def test_cosine_lr_state_dict(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| self._check_scheduler_state_dict( |
| lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min), |
| lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2), |
| epochs=epochs) |
| |
| def test_reduce_lr_on_plateau_state_dict(self): |
| scheduler = ReduceLROnPlateau(self.opt, mode='min', factor=0.1, patience=2) |
| for score in [1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 2.0, 1.0]: |
| scheduler.step(score) |
| scheduler_copy = ReduceLROnPlateau(self.opt, mode='max', factor=0.5, patience=10) |
| scheduler_copy.load_state_dict(scheduler.state_dict()) |
| for key in scheduler.__dict__.keys(): |
| if key not in {'optimizer', 'is_better'}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_lambda_lr_state_dict_fn(self): |
| scheduler = LambdaLR(self.opt, lr_lambda=lambda x: x) |
| state = scheduler.state_dict() |
| self.assertIsNone(state['lr_lambdas'][0]) |
| |
| scheduler_copy = LambdaLR(self.opt, lr_lambda=lambda x: x) |
| scheduler_copy.load_state_dict(state) |
| for key in scheduler.__dict__.keys(): |
| if key not in {'optimizer', 'lr_lambdas'}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_lambda_lr_state_dict_obj(self): |
| scheduler = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(10)) |
| state = scheduler.state_dict() |
| self.assertIsNotNone(state['lr_lambdas'][0]) |
| |
| scheduler_copy = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(-1)) |
| scheduler_copy.load_state_dict(state) |
| for key in scheduler.__dict__.keys(): |
| if key not in {'optimizer'}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_CosineAnnealingWarmRestarts_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=2), |
| lambda: CosineAnnealingWarmRestarts(self.opt, T_0=100)) |
| |
| def test_swa_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: SWALR(self.opt, anneal_epochs=3, swa_lr=0.5), |
| lambda: SWALR(self.opt, anneal_epochs=10, anneal_strategy="linear", swa_lr=5.)) |
| |
| def _check_scheduler_state_dict(self, constr, constr2, epochs=10): |
| scheduler = constr() |
| for _ in range(epochs): |
| scheduler.optimizer.step() |
| scheduler.step() |
| scheduler_copy = constr2() |
| scheduler_copy.load_state_dict(scheduler.state_dict()) |
| for key in scheduler.__dict__.keys(): |
| if key != 'optimizer': |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| self.assertEqual(scheduler.get_last_lr(), scheduler_copy.get_last_lr()) |
| |
| def _test_get_last_lr(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, _LRScheduler): |
| schedulers = [schedulers] |
| optimizers = {scheduler.optimizer for scheduler in schedulers} |
| for epoch in range(epochs): |
| result = [scheduler.get_last_lr() for scheduler in schedulers] |
| [optimizer.step() for optimizer in optimizers] |
| [scheduler.step() for scheduler in schedulers] |
| target = [[t[epoch] for t in targets]] * len(schedulers) |
| for t, r in zip(target, result): |
| self.assertEqual(target, result, |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, t, r), atol=1e-5, rtol=0) |
| |
| def _test_with_epoch(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, _LRScheduler): |
| schedulers = [schedulers] |
| optimizers = {scheduler.optimizer for scheduler in schedulers} |
| for epoch in range(epochs): |
| [optimizer.step() for optimizer in optimizers] |
| with warnings.catch_warnings(record=True) as w: |
| [scheduler.step(epoch) for scheduler in schedulers] # step before assert: skip initial lr |
| self._check_warning_is_epoch_deprecation_warning(w, num_warnings=len(schedulers)) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[epoch], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) |
| |
| def _test(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, _LRScheduler): |
| schedulers = [schedulers] |
| for epoch in range(epochs): |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[epoch], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) |
| [scheduler.step() for scheduler in schedulers] |
| |
| def _test_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs=10): |
| for index, epoch in enumerate(torch.arange(0, epochs, 0.1)): |
| epoch = round(epoch.item(), 1) |
| scheduler.step(epoch) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[index], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[index], param_group['lr']), atol=1e-5, rtol=0) |
| |
| def _test_interleaved_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs): |
| for index, epoch in enumerate(epochs): |
| scheduler.step(epoch) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[index], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[index], param_group['lr']), atol=1e-5, rtol=0) |
| |
| def _test_against_closed_form(self, scheduler, closed_form_scheduler, epochs=10): |
| self.setUp() |
| targets = [] |
| for epoch in range(epochs): |
| closed_form_scheduler.optimizer.step() |
| with warnings.catch_warnings(record=True) as w: |
| closed_form_scheduler.step(epoch) |
| self._check_warning_is_epoch_deprecation_warning(w) |
| targets.append([group['lr'] for group in self.opt.param_groups]) |
| self.setUp() |
| for epoch in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| for i, param_group in enumerate(self.opt.param_groups): |
| self.assertEqual(targets[epoch][i], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, targets[epoch][i], param_group['lr']), atol=1e-5, rtol=0) |
| |
| def _test_reduce_lr_on_plateau(self, schedulers, targets, metrics, epochs=10, verbose=False): |
| if isinstance(schedulers, _LRScheduler) or isinstance(schedulers, ReduceLROnPlateau): |
| schedulers = [schedulers] |
| for epoch in range(epochs): |
| self.opt.step() |
| for scheduler in schedulers: |
| if isinstance(scheduler, ReduceLROnPlateau): |
| scheduler.step(metrics[epoch]) |
| else: |
| scheduler.step() |
| if verbose: |
| print('epoch{}:\tlr={}'.format(epoch, self.opt.param_groups[0]['lr'])) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual(target[epoch], param_group['lr'], |
| msg='LR is wrong in epoch {}: expected {}, got {}'.format( |
| epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) |
| |
| def _test_cycle_lr(self, scheduler, lr_targets, momentum_targets, batch_iterations, verbose=False, use_beta1=False): |
| for batch_num in range(batch_iterations): |
| if verbose: |
| if 'momentum' in self.opt.param_groups[0].keys(): |
| print('batch{}:\tlr={},momentum={}'.format(batch_num, self.opt.param_groups[0]['lr'], |
| self.opt.param_groups[0]['momentum'])) |
| elif use_beta1 and 'betas' in self.opt.param_groups[0].keys(): |
| print('batch{}:\tlr={},beta1={}'.format(batch_num, self.opt.param_groups[0]['lr'], |
| self.opt.param_groups[0]['betas'][0])) |
| else: |
| print('batch{}:\tlr={}'.format(batch_num, self.opt.param_groups[0]['lr'])) |
| |
| for param_group, lr_target, momentum_target in zip(self.opt.param_groups, lr_targets, momentum_targets): |
| self.assertEqual( |
| lr_target[batch_num], param_group['lr'], |
| msg='LR is wrong in batch_num {}: expected {}, got {}'.format( |
| batch_num, lr_target[batch_num], param_group['lr']), atol=1e-5, rtol=0) |
| |
| if use_beta1 and 'betas' in param_group.keys(): |
| self.assertEqual( |
| momentum_target[batch_num], param_group['betas'][0], |
| msg='Beta1 is wrong in batch_num {}: expected {}, got {}'.format( |
| batch_num, momentum_target[batch_num], param_group['betas'][0]), atol=1e-5, rtol=0) |
| elif 'momentum' in param_group.keys(): |
| self.assertEqual( |
| momentum_target[batch_num], param_group['momentum'], |
| msg='Momentum is wrong in batch_num {}: expected {}, got {}'.format( |
| batch_num, momentum_target[batch_num], param_group['momentum']), atol=1e-5, rtol=0) |
| self.opt.step() |
| scheduler.step() |
| |
| def test_cosine_then_cyclic(self): |
| # https://github.com/pytorch/pytorch/issues/21965 |
| |
| max_lr = 0.3 |
| base_lr = 0.1 |
| optim_lr = 0.5 |
| |
| model = torch.nn.Linear(2, 1) |
| optimizer = torch.optim.SGD(model.parameters(), lr=optim_lr) |
| lr_scheduler_1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20, eta_min=0.1) |
| lr_scheduler_2 = torch.optim.lr_scheduler.CyclicLR( |
| optimizer, base_lr=base_lr, max_lr=max_lr, step_size_up=1, step_size_down=3 |
| ) |
| |
| for i in range(40): |
| optimizer.step() |
| if i <= lr_scheduler_1.T_max: |
| lr_scheduler_1.step() |
| else: |
| lr_scheduler_2.step() |
| last_lr = optimizer.param_groups[0]["lr"] |
| |
| self.assertLessEqual(last_lr, max_lr) |
| |
| |
| class SWATestDNN(torch.nn.Module): |
| def __init__(self, input_features): |
| super(SWATestDNN, self).__init__() |
| self.n_features = 100 |
| self.fc1 = torch.nn.Linear(input_features, self.n_features) |
| self.bn = torch.nn.BatchNorm1d(self.n_features) |
| |
| def compute_preactivation(self, x): |
| return self.fc1(x) |
| |
| def forward(self, x): |
| x = self.fc1(x) |
| x = self.bn(x) |
| return x |
| |
| |
| class SWATestCNN(torch.nn.Module): |
| def __init__(self, input_channels): |
| super(SWATestCNN, self).__init__() |
| self.n_features = 10 |
| self.conv1 = torch.nn.Conv2d(input_channels, self.n_features, kernel_size=3, padding=1) |
| self.bn = torch.nn.BatchNorm2d(self.n_features, momentum=0.3) |
| |
| def compute_preactivation(self, x): |
| return self.conv1(x) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.bn(x) |
| return x |
| |
| |
| class TestSWAUtils(TestCase): |
| |
| def _test_averaged_model(self, net_device, swa_device): |
| dnn = torch.nn.Sequential( |
| torch.nn.Conv2d(1, 5, kernel_size=3), |
| torch.nn.ReLU(), |
| torch.nn.MaxPool2d(kernel_size=2), |
| torch.nn.BatchNorm2d(5, momentum=0.3), |
| torch.nn.Conv2d(5, 2, kernel_size=3), |
| torch.nn.ReLU(), |
| torch.nn.Linear(5, 5), |
| torch.nn.ReLU(), |
| torch.nn.Linear(5, 10) |
| ).to(net_device) |
| |
| averaged_dnn = AveragedModel(dnn, device=swa_device) |
| averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] |
| n_updates = 10 |
| for i in range(n_updates): |
| for p, p_avg in zip(dnn.parameters(), averaged_params): |
| p.detach().add_(torch.randn_like(p)) |
| p_avg += p.detach() / n_updates |
| averaged_dnn.update_parameters(dnn) |
| |
| for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): |
| self.assertEqual(p_avg, p_swa) |
| # Check that AveragedModel is on the correct device |
| self.assertTrue(p_swa.device == swa_device) |
| self.assertTrue(p.device == net_device) |
| self.assertTrue(averaged_dnn.n_averaged.device == swa_device) |
| |
| def test_averaged_model_all_devices(self): |
| cpu = torch.device("cpu") |
| self._test_averaged_model(cpu, cpu) |
| if torch.cuda.is_available(): |
| cuda = torch.device(0) |
| self._test_averaged_model(cuda, cpu) |
| self._test_averaged_model(cpu, cuda) |
| self._test_averaged_model(cuda, cuda) |
| |
| def test_averaged_model_mixed_device(self): |
| if not torch.cuda.is_available(): |
| return |
| dnn = torch.nn.Sequential( |
| torch.nn.Conv2d(1, 5, kernel_size=3), |
| torch.nn.Linear(5, 10) |
| ) |
| dnn[0].cuda() |
| dnn[1].cpu() |
| averaged_dnn = AveragedModel(dnn) |
| averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] |
| n_updates = 10 |
| for i in range(n_updates): |
| for p, p_avg in zip(dnn.parameters(), averaged_params): |
| p.detach().add_(torch.randn_like(p)) |
| p_avg += p.detach() / n_updates |
| averaged_dnn.update_parameters(dnn) |
| |
| for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): |
| self.assertEqual(p_avg, p_swa) |
| # Check that AveragedModel is on the correct device |
| self.assertTrue(p_avg.device == p_swa.device) |
| |
| def test_averaged_model_state_dict(self): |
| dnn = torch.nn.Sequential( |
| torch.nn.Conv2d(1, 5, kernel_size=3), |
| torch.nn.Linear(5, 10) |
| ) |
| averaged_dnn = AveragedModel(dnn) |
| averaged_dnn2 = AveragedModel(dnn) |
| n_updates = 10 |
| for i in range(n_updates): |
| for p in dnn.parameters(): |
| p.detach().add_(torch.randn_like(p)) |
| averaged_dnn.update_parameters(dnn) |
| averaged_dnn2.load_state_dict(averaged_dnn.state_dict()) |
| for p_swa, p_swa2 in zip(averaged_dnn.parameters(), averaged_dnn2.parameters()): |
| self.assertEqual(p_swa, p_swa2) |
| self.assertTrue(averaged_dnn.n_averaged == averaged_dnn2.n_averaged) |
| |
| def test_averaged_model_exponential(self): |
| # Test AveragedModel with EMA as avg_fn |
| dnn = torch.nn.Sequential( |
| torch.nn.Conv2d(1, 5, kernel_size=3), |
| torch.nn.Linear(5, 10) |
| ) |
| alpha = 0.9 |
| |
| def avg_fn(p_avg, p, n_avg): |
| return alpha * p_avg + (1 - alpha) * p |
| averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn) |
| averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] |
| n_updates = 10 |
| for i in range(n_updates): |
| updated_averaged_params = [] |
| for p, p_avg in zip(dnn.parameters(), averaged_params): |
| p.detach().add_(torch.randn_like(p)) |
| if i == 0: |
| updated_averaged_params.append(p.clone()) |
| else: |
| updated_averaged_params.append((p_avg * alpha + |
| p * (1 - alpha)).clone()) |
| averaged_dnn.update_parameters(dnn) |
| averaged_params = updated_averaged_params |
| |
| for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): |
| self.assertEqual(p_avg, p_swa) |
| |
| def test_averaged_model_exponential_buffers(self): |
| # Test AveragedModel with EMA as avg_fn and use_buffers as True. |
| dnn = torch.nn.Sequential( |
| torch.nn.Conv2d(1, 5, kernel_size=3), |
| torch.nn.BatchNorm2d(5, momentum=0.3), |
| torch.nn.Linear(5, 10) |
| ) |
| alpha = 0.9 |
| |
| def avg_fn(p_avg, p, n_avg): |
| return alpha * p_avg + (1 - alpha) * p |
| averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn, use_buffers=True) |
| dnn_params = itertools.chain(dnn.parameters(), dnn.buffers()) |
| averaged_params = [torch.zeros_like(param) for param in dnn_params |
| if param.size() != torch.Size([])] |
| n_updates = 10 |
| for i in range(n_updates): |
| updated_averaged_params = [] |
| for p, p_avg in zip(dnn_params, averaged_params): |
| if p.size() == torch.Size([]): |
| continue |
| p.detach().add_(torch.randn_like(p)) |
| if i == 0: |
| updated_averaged_params.append(p.clone()) |
| else: |
| updated_averaged_params.append((p_avg * alpha + |
| p * (1 - alpha)).clone()) |
| averaged_dnn.update_parameters(dnn) |
| averaged_params = updated_averaged_params |
| |
| for p_avg, p_swa in zip( |
| averaged_params, itertools.chain(averaged_dnn.module.parameters(), averaged_dnn.module.buffers())): |
| self.assertEqual(p_avg, p_swa) |
| |
| def _test_update_bn(self, dnn, dl_x, dl_xy, cuda): |
| |
| preactivation_sum = torch.zeros(dnn.n_features) |
| preactivation_squared_sum = torch.zeros(dnn.n_features) |
| if cuda: |
| preactivation_sum = preactivation_sum.cuda() |
| preactivation_squared_sum = preactivation_squared_sum.cuda() |
| total_num = 0 |
| for x in dl_x: |
| x = x[0] |
| if cuda: |
| x = x.cuda() |
| |
| dnn.forward(x) |
| preactivations = dnn.compute_preactivation(x) |
| if len(preactivations.shape) == 4: |
| preactivations = preactivations.transpose(1, 3) |
| preactivations = preactivations.contiguous().view(-1, dnn.n_features) |
| total_num += preactivations.shape[0] |
| |
| preactivation_sum += torch.sum(preactivations, dim=0) |
| preactivation_squared_sum += torch.sum(preactivations**2, dim=0) |
| |
| preactivation_mean = preactivation_sum / total_num |
| preactivation_var = preactivation_squared_sum / total_num |
| preactivation_var = preactivation_var - preactivation_mean**2 |
| |
| update_bn(dl_xy, dnn, device=x.device) |
| self.assertEqual(preactivation_mean, dnn.bn.running_mean) |
| self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) |
| |
| def _reset_bn(module): |
| if issubclass(module.__class__, |
| torch.nn.modules.batchnorm._BatchNorm): |
| module.running_mean = torch.zeros_like(module.running_mean) |
| module.running_var = torch.ones_like(module.running_var) |
| # reset batch norm and run update_bn again |
| dnn.apply(_reset_bn) |
| update_bn(dl_xy, dnn, device=x.device) |
| self.assertEqual(preactivation_mean, dnn.bn.running_mean) |
| self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) |
| # using the dl_x loader instead of dl_xy |
| dnn.apply(_reset_bn) |
| update_bn(dl_x, dnn, device=x.device) |
| self.assertEqual(preactivation_mean, dnn.bn.running_mean) |
| self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) |
| |
| def test_update_bn_dnn(self): |
| # Test update_bn for a fully-connected network with BatchNorm1d |
| objects, input_features = 100, 5 |
| x = torch.rand(objects, input_features) |
| y = torch.rand(objects) |
| ds_x = torch.utils.data.TensorDataset(x) |
| ds_xy = torch.utils.data.TensorDataset(x, y) |
| dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) |
| dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) |
| dnn = SWATestDNN(input_features=input_features) |
| dnn.train() |
| self._test_update_bn(dnn, dl_x, dl_xy, False) |
| if torch.cuda.is_available(): |
| dnn = SWATestDNN(input_features=input_features) |
| dnn.train() |
| self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) |
| self.assertTrue(dnn.training) |
| |
| def test_update_bn_cnn(self): |
| # Test update_bn for convolutional network and BatchNorm2d |
| objects = 100 |
| input_channels = 3 |
| height, width = 5, 5 |
| x = torch.rand(objects, input_channels, height, width) |
| y = torch.rand(objects) |
| ds_x = torch.utils.data.TensorDataset(x) |
| ds_xy = torch.utils.data.TensorDataset(x, y) |
| dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) |
| dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) |
| dnn = SWATestCNN(input_channels=input_channels) |
| dnn.train() |
| self._test_update_bn(dnn, dl_x, dl_xy, False) |
| if torch.cuda.is_available(): |
| dnn = SWATestCNN(input_channels=input_channels) |
| dnn.train() |
| self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) |
| self.assertTrue(dnn.training) |
| |
| def test_bn_update_eval_momentum(self): |
| # check that update_bn preserves eval mode |
| objects = 100 |
| input_channels = 3 |
| height, width = 5, 5 |
| x = torch.rand(objects, input_channels, height, width) |
| ds_x = torch.utils.data.TensorDataset(x) |
| dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) |
| dnn = SWATestCNN(input_channels=input_channels) |
| dnn.eval() |
| update_bn(dl_x, dnn) |
| self.assertFalse(dnn.training) |
| |
| # check that momentum is preserved |
| self.assertEqual(dnn.bn.momentum, 0.3) |
| |
| instantiate_parametrized_tests(TestLRScheduler) |
| |
| |
| def _diff_fn(p, grad, opt_differentiable_state, opt_class, kwargs, *ignored): |
| # Ignored is the list of values in `opt_differentiable_state`, we do this |
| # for `gradcheck` to correctly track the state tensors as function inputs |
| # because otherwise it can't unpack the values in the `opt_differentiable_state` |
| # dict |
| p = p.clone() |
| p.grad = grad |
| opt_differentiable_state = {k: v.clone() for k, v in opt_differentiable_state.items()} |
| opt = opt_class([p], **kwargs) |
| opt.state.update(opt_differentiable_state) |
| opt.step() |
| return (p,) + tuple(opt_differentiable_state.values()) |
| |
| |
| class TestDifferentiableOptimizer(TestCase): |
| |
| def test_sgd(self): |
| p = torch.rand(10, requires_grad=True, dtype=torch.float64) |
| grad = torch.rand(10, requires_grad=True, dtype=torch.float64) |
| mbuff = torch.rand(10, requires_grad=True, dtype=torch.float64) |
| state = {'momentum_buffer': mbuff} |
| gradcheck(_diff_fn, (p, grad, state, torch.optim.SGD, {'lr': 0.9, 'differentiable': True}, *state.values())) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |