blob: 2bab93192e655b076e389fd962e642f2a3ec6a87 [file] [log] [blame]
# Owner(s): ["oncall: profiler"]
import functools
import os
import re
import textwrap
import traceback
import unittest
import expecttest
import torch
from torch._C._autograd import _ExtraFields_PyCall, _ExtraFields_PyCCall
from torch.testing._internal.common_utils import (
TestCase, run_tests, IS_WINDOWS, TEST_WITH_CROSSREF)
# These functions can vary from based on platform and build (e.g. with CUDA)
# and generally distract from rather than adding to the test.
PRUNE_FUNCTIONS = {
"torch/profiler/profiler.py(...): start": True,
"torch/profiler/profiler.py(...): stop_trace": True,
"cudaStreamIsCapturing": False,
"cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags": False,
}
# ROCTracer is currently not producing events that profiler can extract. We
# should bring it up to parity with CUPTI Kineto / profiler integration, but in
# the mean time there is still utility in running tests but not checking that
# the values match expected value.
# 1) We will still catch runtime errors and assert failures
# 2) We can diff the output to see how far we are from parity
#
# TODO: We also fail to capture events for Windows on some platforms.
ALLOW_CUDA_FAILURE = (torch.version.hip is not None) or IS_WINDOWS
class ProfilerTree:
@staticmethod
def test(f):
"""Mark unit test that will be using ProfilerTree to test traces.
This decorator serves two purposes. First, it provides a method name
that `format` can use to tell where the test runner (which is
environment specific) ends and the unit test begins. Second, it runs
the test with replicates and allows `assertTreesMatch` to adjust
based on which replicate is running.
"""
@functools.wraps(f)
def begin_unit_test_marker(self, replicates=3):
try:
for i in range(replicates):
self.tree_replicate = i
out = f(self)
if self.tree_replicate is None:
break
return out
finally:
delattr(self, "tree_replicate")
return begin_unit_test_marker
@classmethod
def format(cls, profiler, indent: int = 0):
def flatten(nodes, depth=0, out=None):
if out is None:
out = []
for node in nodes:
cls.validate_node(node)
name = cls.fmt_name(node.name())
add_ellipses = PRUNE_FUNCTIONS.get(name.strip(), None)
if add_ellipses is None:
out.append((depth, name))
flatten(node.children, depth + 1, out)
elif add_ellipses:
out.append((depth, "..."))
return out
flat_nodes = flatten(profiler.kineto_results.experimental_event_tree())
# Profiler inserts a `cudaDeviceSynchronize` at the end of profiling.
if flat_nodes and flat_nodes[-1][1] == "cudaDeviceSynchronize":
flat_nodes = flat_nodes[:-1]
min_depth = min([d + 1 for d, name in flat_nodes if "begin_unit_test_marker" in name] or [0])
return textwrap.indent(
"\n".join([f"{' ' * (d - min_depth)}{name.rstrip()}" for d, name in flat_nodes if d >= min_depth]),
" " * indent)
@staticmethod
def fmt_name(name: str) -> str:
# torch::autograd::Node relies on c10::demangle to generate names, and
# Windows demangles to include `struct` in the name.
if IS_WINDOWS:
name = name.replace('struct torch::autograd::AccumulateGrad', 'torch::autograd::AccumulateGrad')
match = re.match(r"(.*)\.py\(([0-9]+)\): (.*)$", name)
if match:
filename, _, fn = match.groups()
# This test can appear as `test/test_profiler_tree.py` depending on
# where it is run from.
if filename.endswith(os.path.splitext(__file__)[0]):
filename = os.path.split(os.path.splitext(__file__)[0])[1]
# We test against a string literal, so all paths have to look like POSIX paths.
filename = filename.replace(os.sep, "/")
# We don't want to have to update this test every time PyTorch changes.
# At some point we should test some line numbers, but for now it's
# too brittle.
lineno = "..."
return f"{filename}.py({lineno}): {fn}"
for kernel_pattern in (
"void at::native::elementwise_kernel",
"void at::native::reduce_kernel",
"void at::native::vectorized_elementwise_kernel",
"void at::native::unrolled_elementwise_kernel",
r"void [a-zA-Z0-9]+_kernel", # Nvidia kernels.
):
name = re.sub(
rf"{kernel_pattern}<.+>\(.+\)$",
f"{kernel_pattern.replace('[a-zA-Z0-9]+', '...')}<...>(...)",
name)
return re.sub(
"object at 0x[0-9a-fA-F]+>",
"object at 0xXXXXXXXXXXXX>",
name)
@classmethod
def validate_node(cls, node):
extra_fields = node.extra_fields
if isinstance(extra_fields, (_ExtraFields_PyCall, _ExtraFields_PyCCall)):
# Check that the lineage established by the profiler matches the
# caller recorded by the Python tracer.
parent = node.parent
while parent is not None:
if isinstance(parent.extra_fields, _ExtraFields_PyCall):
break
parent = parent.parent
def to_string(frame_state):
return f"{frame_state.file_name}(...): {frame_state.function_name}"
if parent:
parent_name = to_string(parent.extra_fields.callsite)
caller_name = to_string(extra_fields.caller)
assert parent_name == caller_name, f"{parent_name} vs. {caller_name}"
class TestProfilerTree(TestCase):
def assertTreesMatch(self, actual: str, expected: str, allow_failure: bool = False):
# Warning: Here be dragons
# Different platforms will have subtly different behavior for Python
# tracing. Observed differences include:
# 1) Windows symbolicates names differently from posix
# 2) The profile callback for c_call does not fire for Tensor.__pow__
# on certain platforms. This is not caused by the function tracer,
# but by cPython itself.
#
# The purpose of these unit tests is to ensure that the profiler is
# doing reasonable things. When these platform dependent variations occur
# simply coerce them into a platform independent form. If you made a
# change in the codebase which changes the trace produced, simply use
# EXPECTTEST_ACCEPT=1 to update the tests to reflect the new structure.
# expecttest will not show the diff view if `len(actual) < len(expected)`
if not expecttest.ACCEPT:
actual = actual.ljust(len(expected))
self.maxDiff = None
replicate = getattr(self, "tree_replicate", None)
self.assertIsNotNone(replicate, "Please annotate test with `@ProfilerTree.test`")
# The profiler should produce deterministic results and should return
# to a clean state after each run. As a result, only the first
# replicate is allowed to update `expected`. If subsequent runs do not
# match it is a bug in the profiler.
if replicate:
self.assertEqual(actual, expected)
else:
try:
self.assertExpectedInline(actual, expected, skip=1)
except AssertionError as e:
if allow_failure:
self.tree_replicate = None
msg = traceback.format_exception_only(type(e), e)[0]
print(msg.split("AssertionError:")[-1])
else:
raise
@ProfilerTree.test
def test_profiler_experimental_tree(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile() as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::add
aten::ones
aten::empty
aten::fill_
aten::sub
aten::pow
aten::result_type
aten::to
aten::ones_like
aten::empty_like
aten::empty_strided
aten::fill_
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
aten::copy_
aten::mul
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
aten::copy_
aten::mul
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach"""
)
@ProfilerTree.test
def test_profiler_experimental_tree_with_record_function(self):
with torch.profiler.profile() as p:
with torch.autograd.profiler.record_function("Top level Annotation"):
with torch.autograd.profiler.record_function("First Annotation"):
x = torch.ones((1,), requires_grad=True)
# Check that we correctly handle the case when a user
# annotation does not call `__exit__`.
_ = torch.autograd.profiler.record_function("Second Annotation").__enter__()
y = x + 1
with torch.autograd.profiler.record_function("Third Annotation"):
y.backward()
# NB: The `aten::zeros` before the record function annotations are due to
# `at::cpp_custom_type_hack`. When we switch to `torch::CustomClassHolder`
# they will disappear.
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::zeros
aten::empty
aten::zero_
Top level Annotation
aten::empty
aten::zeros
aten::empty
aten::zero_
First Annotation
aten::empty
aten::ones
aten::empty
aten::fill_
aten::zeros
aten::empty
aten::zero_
Second Annotation
aten::empty
aten::add
aten::to
aten::_to_copy
aten::empty_strided
aten::copy_
aten::zeros
aten::empty
aten::zero_
Third Annotation
aten::empty
aten::ones_like
aten::empty_like
aten::empty_strided
aten::fill_
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
aten::copy_"""
)
@ProfilerTree.test
def test_profiler_experimental_tree_with_memory(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile(profile_memory=True) as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::add
[memory]
aten::ones
aten::empty
[memory]
aten::fill_
aten::sub
[memory]
aten::pow
aten::result_type
aten::to
[memory]
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
[memory]
aten::copy_
aten::mul
[memory]
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
[memory]
aten::copy_
[memory]
[memory]
[memory]
aten::mul
[memory]
[memory]
[memory]
[memory]
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
[memory]
[memory]
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
[memory]
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach
[memory]"""
)
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@ProfilerTree.test
def test_profiler_experimental_tree_with_memory_and_stack(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile(with_stack=True, profile_memory=True) as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.pow(y - z, 2)
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
test_profiler_tree.py(...): test_profiler_experimental_tree_with_memory_and_stack
torch/profiler/profiler.py(...): __enter__
...
<built-in method add of type object at 0xXXXXXXXXXXXX>
aten::add
[memory]
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
[memory]
aten::fill_
aten::sub
[memory]
<built-in method pow of type object at 0xXXXXXXXXXXXX>
aten::pow
aten::result_type
aten::to
[memory]
torch/_tensor.py(...): backward
<built-in function _has_torch_function_unary>
torch/autograd/__init__.py(...): backward
<built-in function isinstance>
<built-in function isinstance>
<built-in function len>
torch/autograd/__init__.py(...): _tensor_or_tensors_to_tuple
torch/autograd/__init__.py(...): _make_grads
<built-in function isinstance>
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
<built-in method ones_like of type object at 0xXXXXXXXXXXXX>
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
<built-in method append of list object at 0xXXXXXXXXXXXX>
<built-in method run_backward of torch._C._EngineBase object at 0xXXXXXXXXXXXX>
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
[memory]
aten::copy_
aten::mul
[memory]
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
[memory]
aten::copy_
[memory]
[memory]
[memory]
aten::mul
[memory]
[memory]
[memory]
[memory]
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
[memory]
[memory]
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
[memory]
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach
[memory]
torch/profiler/profiler.py(...): __exit__
torch/profiler/profiler.py(...): stop
torch/profiler/profiler.py(...): _transit_action
<built-in method get of dict object at 0xXXXXXXXXXXXX>
enum.py(...): __hash__
<built-in function hash>
..."""
)
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@ProfilerTree.test
def test_profiler_experimental_tree_with_stack_and_modules(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.layers = [
torch.nn.ReLU(),
torch.nn.Linear(1, 1),
torch.nn.ReLU(),
]
def forward(self, x: torch.Tensor) -> torch.Tensor:
for l in self.layers:
x = l(x)
return x
model = MyModule()
with torch.profiler.profile(with_stack=True) as p:
for _ in range(2):
model(torch.ones((1,)))
self.maxDiff = None
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
test_profiler_tree.py(...): test_profiler_experimental_tree_with_stack_and_modules
torch/profiler/profiler.py(...): __enter__
...
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
aten::fill_
nn.Module: MyModule_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
test_profiler_tree.py(...): forward
nn.Module: ReLU_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
nn.Module: Linear_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/linear.py(...): forward
torch/nn/modules/module.py(...): __getattr__
torch/nn/modules/module.py(...): __getattr__
<built-in function linear>
aten::linear
aten::t
aten::transpose
aten::as_strided
aten::matmul
aten::t
aten::transpose
aten::as_strided
aten::mv
aten::empty
aten::addmv_
aten::add_
nn.Module: ReLU_1
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
aten::fill_
nn.Module: MyModule_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
test_profiler_tree.py(...): forward
nn.Module: ReLU_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
nn.Module: Linear_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/linear.py(...): forward
torch/nn/modules/module.py(...): __getattr__
torch/nn/modules/module.py(...): __getattr__
<built-in function linear>
aten::linear
aten::t
aten::transpose
aten::as_strided
aten::matmul
aten::t
aten::transpose
aten::as_strided
aten::mv
aten::empty
aten::addmv_
aten::add_
nn.Module: ReLU_1
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
torch/profiler/profiler.py(...): __exit__
torch/profiler/profiler.py(...): stop
torch/profiler/profiler.py(...): _transit_action
<built-in method get of dict object at 0xXXXXXXXXXXXX>
enum.py(...): __hash__
<built-in function hash>
..."""
)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
@ProfilerTree.test
def test_profiler_experimental_tree_cuda(self):
with torch.profiler.profile(profile_memory=True) as p:
weight = torch.ones(1, device="cuda", requires_grad=True)
x = torch.ones(1, device="cuda")
y = torch.add(weight, x)
loss = torch.pow(y, 2)
loss.backward()
torch.optim.SGD([weight], lr=0.01, momentum=0.9).step()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::ones
aten::empty
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
aten::ones
aten::empty
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
aten::add
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
aten::pow
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
aten::result_type
aten::to
[memory]
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
[memory]
aten::copy_
cudaMemcpyAsync
Memcpy DtoD (Device -> Device)
aten::mul
[memory]
aten::mul
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]
aten::mul
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]
[memory]
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach
[memory]
aten::zeros
aten::empty
[memory]
aten::zero_
Optimizer.step#SGD.step
aten::empty
[memory]
[memory]
[memory]
aten::clone
aten::empty_strided
[memory]
aten::copy_
cudaMemcpyAsync
Memcpy DtoD (Device -> Device)
aten::detach
detach
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]""", # noqa: B950
allow_failure=ALLOW_CUDA_FAILURE,
)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
@ProfilerTree.test
def test_profiler_experimental_tree_cuda_with_stream(self):
streams = [torch.cuda.Stream() for _ in range(3)]
results = []
with torch.profiler.profile(profile_memory=True) as p:
x = torch.ones((4, 4), device="cuda")
for stream in streams:
with torch.cuda.stream(stream):
results.append(torch.tanh(x) - x)
del results
for s in streams:
torch.cuda.current_stream().wait_stream(s)
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::ones
aten::empty
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
aten::tanh
cudaMalloc
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
aten::sub
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]
aten::tanh
cudaMalloc
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
aten::sub
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]
aten::tanh
cudaMalloc
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
aten::sub
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]""",
allow_failure=ALLOW_CUDA_FAILURE,
)
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
@ProfilerTree.test
def test_profiler_experimental_tree_cuda_detailed(self):
model = torch.nn.modules.Linear(1, 1, device="cuda")
model.train()
opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
def step():
x = torch.ones((1, 1), device="cuda")
loss = model(x)
loss.backward()
opt.step()
# Warmup
for _ in range(3):
step()
with torch.profiler.profile(profile_memory=True, with_stack=True) as p:
step()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
test_profiler_tree.py(...): test_profiler_experimental_tree_cuda_detailed
torch/profiler/profiler.py(...): __enter__
...
test_profiler_tree.py(...): step
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
nn.Module: Linear_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/linear.py(...): forward
torch/nn/modules/module.py(...): __getattr__
torch/nn/modules/module.py(...): __getattr__
<built-in function linear>
aten::linear
aten::t
aten::transpose
aten::as_strided
aten::addmm
cudaMemcpyAsync
Memcpy DtoD (Device -> Device)
cudaLaunchKernel
void ..._kernel<...>(...)
[memory]
aten::expand
aten::as_strided
torch/_tensor.py(...): backward
<built-in function _has_torch_function_unary>
torch/autograd/__init__.py(...): backward
<built-in function isinstance>
<built-in function isinstance>
<built-in function len>
torch/autograd/__init__.py(...): _tensor_or_tensors_to_tuple
torch/autograd/__init__.py(...): _make_grads
<built-in function isinstance>
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
<built-in method ones_like of type object at 0xXXXXXXXXXXXX>
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
<built-in method append of list object at 0xXXXXXXXXXXXX>
<built-in method run_backward of torch._C._EngineBase object at 0xXXXXXXXXXXXX>
autograd::engine::evaluate_function: AddmmBackward0
AddmmBackward0
aten::t
aten::transpose
aten::as_strided
aten::mm
cudaLaunchKernel
void ..._kernel<...>(...)
[memory]
aten::t
aten::transpose
aten::as_strided
aten::sum
aten::sum
cudaLaunchKernel
void at::native::reduce_kernel<...>(...)
[memory]
aten::view
aten::view
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
autograd::engine::evaluate_function: TBackward0
TBackward0
aten::t
aten::transpose
aten::as_strided
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
[memory]
torch/optim/optimizer.py(...): wrapper
<built-in method format of str object at 0xXXXXXXXXXXXX>
torch/autograd/profiler.py(...): __init__
<built-in method zeros of type object at 0xXXXXXXXXXXXX>
aten::zeros
aten::empty
[memory]
aten::zero_
torch/autograd/profiler.py(...): __enter__
torch/_ops.py(...): __call__
<built-in method _record_function_enter of PyCapsule object at 0xXXXXXXXXXXXX>
Optimizer.step#SGD.step
aten::empty
[memory]
[memory]
[memory]
torch/optim/optimizer.py(...): _use_grad
<built-in function is_grad_enabled>
torch/autograd/grad_mode.py(...): __init__
<built-in function is_grad_enabled>
<built-in function _set_grad_enabled>
torch/optim/sgd.py(...): step
<built-in method append of list object at 0xXXXXXXXXXXXX>
<built-in method append of list object at 0xXXXXXXXXXXXX>
torch/_tensor.py(...): __hash__
<built-in function _has_torch_function_unary>
<built-in function id>
<built-in method append of list object at 0xXXXXXXXXXXXX>
<built-in method append of list object at 0xXXXXXXXXXXXX>
<built-in method append of list object at 0xXXXXXXXXXXXX>
torch/_tensor.py(...): __hash__
<built-in function _has_torch_function_unary>
<built-in function id>
<built-in method append of list object at 0xXXXXXXXXXXXX>
torch/optim/sgd.py(...): sgd
torch/optim/sgd.py(...): _single_tensor_sgd
<built-in method mul_ of Tensor object at 0xXXXXXXXXXXXX>
[memory]
aten::mul_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
<built-in method add_ of Tensor object at 0xXXXXXXXXXXXX>
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
<built-in method add_ of Tensor object at 0xXXXXXXXXXXXX>
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
<built-in method mul_ of Tensor object at 0xXXXXXXXXXXXX>
[memory]
aten::mul_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
[memory]
<built-in method add_ of Tensor object at 0xXXXXXXXXXXXX>
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
<built-in method add_ of Tensor object at 0xXXXXXXXXXXXX>
aten::add_
cudaLaunchKernel
void at::native::vectorized_elementwise_kernel<...>(...)
torch/_tensor.py(...): __hash__
<built-in function _has_torch_function_unary>
<built-in function id>
torch/_tensor.py(...): __hash__
<built-in function _has_torch_function_unary>
<built-in function id>
torch/autograd/grad_mode.py(...): __init__
<built-in function is_grad_enabled>
<built-in function _set_grad_enabled>
torch/autograd/profiler.py(...): __exit__
torch/_ops.py(...): __call__
<built-in method _record_function_exit of PyCapsule object at 0xXXXXXXXXXXXX>
[memory]
[memory]
torch/profiler/profiler.py(...): __exit__
torch/profiler/profiler.py(...): stop
torch/profiler/profiler.py(...): _transit_action
<built-in method get of dict object at 0xXXXXXXXXXXXX>
enum.py(...): __hash__
<built-in function hash>
...""", # noqa: B950
allow_failure=ALLOW_CUDA_FAILURE,
)
if __name__ == '__main__':
run_tests()