blob: 9683c163827df2d6d695e68f95de77177fbe847e [file] [log] [blame]
# mypy: allow-untyped-defs
import contextlib
from typing import Optional
import torch
from torch.utils._content_store import ContentStoreReader
LOAD_TENSOR_READER: Optional[ContentStoreReader] = None
@contextlib.contextmanager
def load_tensor_reader(loc):
global LOAD_TENSOR_READER
assert LOAD_TENSOR_READER is None
# load_tensor is an "op", and we will play merry hell on
# Inductor's memory planning if we return a tensor that
# aliases another tensor that we previously returned from
# an operator. So unlike standard ContentStoreReader use,
# we disable the cache so that you always get fresh storages
# (no aliasing for you!)
LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False)
try:
yield
finally:
LOAD_TENSOR_READER = None
def register_debug_prims():
torch.library.define(
"debugprims::load_tensor",
"(str name, int[] size, int[] stride, *, ScalarType dtype, Device device) -> Tensor",
)
@torch.library.impl("debugprims::load_tensor", "BackendSelect")
def load_tensor_factory(name, size, stride, dtype, device):
if LOAD_TENSOR_READER is None:
from torch._dynamo.testing import rand_strided
return rand_strided(size, stride, dtype, device)
else:
from torch._dynamo.utils import clone_input
# device argument here takes care of coercion
r = LOAD_TENSOR_READER.read_tensor(name, device=device)
assert list(r.size()) == size, f"{r.size()} != {size}"
assert list(r.stride()) == stride, f"{r.stride()} != {stride}"
assert r.device == device, f"{r.device} != {device}"
# Unlike the other properties, we will do coercions for dtype
# mismatch
if r.dtype != dtype:
r = clone_input(r, dtype=dtype)
return r