| # mypy: allow-untyped-defs |
| r""" Functional interface (quantized).""" |
| from typing import List, Optional |
| import warnings |
| |
| import torch |
| from torch import Tensor |
| from torch.nn.modules.utils import _pair, _triple |
| from torch.jit.annotations import BroadcastingList2 |
| |
| from .modules.utils import _pair_from_first |
| |
| # Although some of the functions and docstrings are mirrored from the torch.nn, |
| # we want to have them here for future changes. |
| |
| __all__ = [ |
| "avg_pool2d", |
| "avg_pool3d", |
| "adaptive_avg_pool2d", |
| "adaptive_avg_pool3d", |
| "conv1d", |
| "conv2d", |
| "conv3d", |
| "interpolate", |
| "linear", |
| "max_pool1d", |
| "max_pool2d", |
| "celu", |
| "leaky_relu", |
| "hardtanh", |
| "hardswish", |
| "threshold", |
| "elu", |
| "hardsigmoid", |
| "clamp", |
| "upsample", |
| "upsample_bilinear", |
| "upsample_nearest", |
| ] |
| |
| def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, |
| count_include_pad=True, divisor_override=None): |
| r""" |
| Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size |
| :math:`sH \times sW` steps. The number of output features is equal to the number of |
| input planes. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| See :class:`~torch.ao.nn.quantized.AvgPool2d` for details and output shape. |
| |
| Args: |
| input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` |
| kernel_size: size of the pooling region. Can be a single number or a |
| tuple `(kH, kW)` |
| stride: stride of the pooling operation. Can be a single number or a |
| tuple `(sH, sW)`. Default: :attr:`kernel_size` |
| padding: implicit zero paddings on both sides of the input. Can be a |
| single number or a tuple `(padH, padW)`. Default: 0 |
| ceil_mode: when True, will use `ceil` instead of `floor` in the formula |
| to compute the output shape. Default: ``False`` |
| count_include_pad: when True, will include the zero-padding in the |
| averaging calculation. Default: ``True`` |
| divisor_override: if specified, it will be used as divisor, otherwise |
| size of the pooling region will be used. Default: None |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!") |
| return torch.nn.functional.avg_pool2d(input, kernel_size, stride, padding, |
| ceil_mode, count_include_pad, |
| divisor_override) |
| |
| def avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, |
| count_include_pad=True, divisor_override=None): |
| r""" |
| Applies 3D average-pooling operation in :math:`kD \ times kH \times kW` regions by step size |
| :math:`sD \times sH \times sW` steps. The number of output features is equal to the number of |
| input planes. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| Args: |
| input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` |
| kernel_size: size of the pooling region. Can be a single number or a |
| tuple `(kD, kH, kW)` |
| stride: stride of the pooling operation. Can be a single number or a |
| tuple `(sD, sH, sW)`. Default: :attr:`kernel_size` |
| padding: implicit zero paddings on both sides of the input. Can be a |
| single number or a tuple `(padD, padH, padW)`. Default: 0 |
| ceil_mode: when True, will use `ceil` instead of `floor` in the formula |
| to compute the output shape. Default: ``False`` |
| count_include_pad: when True, will include the zero-padding in the |
| averaging calculation. Default: ``True`` |
| divisor_override: if specified, it will be used as divisor, otherwise |
| size of the pooling region will be used. Default: None |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.avg_pool3d' must be quantized!") |
| return torch.nn.functional.avg_pool3d(input, kernel_size, stride, padding, |
| ceil_mode, count_include_pad, |
| divisor_override) |
| |
| def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: |
| r""" |
| Applies a 2D adaptive average pooling over a quantized input signal composed |
| of several quantized input planes. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool2d` for details and output shape. |
| |
| Args: |
| output_size: the target output size (single integer or |
| double-integer tuple) |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!") |
| return torch.nn.functional.adaptive_avg_pool2d(input, output_size) |
| |
| def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: |
| r""" |
| Applies a 3D adaptive average pooling over a quantized input signal composed |
| of several quantized input planes. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool3d` for details and output shape. |
| |
| Args: |
| output_size: the target output size (single integer or |
| double-integer tuple) |
| """ |
| if not input.is_quantized: |
| raise ValueError( |
| "Input to 'quantized.functional.adaptive_avg_pool3d' must be quantized!") |
| return torch.nn.functional.adaptive_avg_pool3d(input, output_size) |
| |
| def conv1d(input, weight, bias, |
| stride=1, padding=0, dilation=1, groups=1, |
| padding_mode='zeros', |
| scale=1.0, zero_point=0, |
| dtype=torch.quint8): |
| r""" |
| Applies a 1D convolution over a quantized 1D input composed of several input |
| planes. |
| |
| See :class:`~torch.ao.nn.quantized.Conv1d` for details and output shape. |
| |
| Args: |
| input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` |
| weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , iW)` |
| bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. |
| stride: the stride of the convolving kernel. Can be a single number or a |
| tuple `(sW,)`. Default: 1 |
| padding: implicit paddings on both sides of the input. Can be a |
| single number or a tuple `(padW,)`. Default: 0 |
| dilation: the spacing between kernel elements. Can be a single number or |
| a tuple `(dW,)`. Default: 1 |
| groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the |
| number of groups. Default: 1 |
| padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" |
| scale: quantization scale for the output. Default: 1.0 |
| zero_point: quantization zero_point for the output. Default: 0 |
| dtype: quantization data type to use. Default: ``torch.quint8`` |
| |
| Examples:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE) |
| >>> from torch.ao.nn.quantized import functional as qF |
| >>> filters = torch.randn(33, 16, 3, dtype=torch.float) |
| >>> inputs = torch.randn(20, 16, 50, dtype=torch.float) |
| >>> bias = torch.randn(33, dtype=torch.float) |
| >>> |
| >>> scale, zero_point = 1.0, 0 |
| >>> dtype_inputs = torch.quint8 |
| >>> dtype_filters = torch.qint8 |
| >>> |
| >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) |
| >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) |
| >>> qF.conv1d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) |
| """ # noqa: E501 |
| if padding_mode != 'zeros': |
| raise NotImplementedError("Only zero-padding is supported!") |
| if input.dtype != torch.quint8: |
| raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") |
| if weight.dtype != torch.qint8: |
| raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") |
| if input.ndim != 3: |
| raise ValueError("Input shape must be `(N, C, L)`!") |
| stride = _pair_from_first(stride) |
| padding = _pair_from_first(padding) |
| dilation = _pair_from_first(dilation) |
| |
| packed_params = torch.ops.quantized.conv1d_prepack( |
| weight, bias, stride, padding, dilation, groups) |
| return torch.ops.quantized.conv1d(input, packed_params, scale, zero_point) |
| |
| def conv2d(input, weight, bias, |
| stride=1, padding=0, dilation=1, groups=1, |
| padding_mode='zeros', |
| scale=1.0, zero_point=0, |
| dtype=torch.quint8): |
| r""" |
| Applies a 2D convolution over a quantized 2D input composed of several input |
| planes. |
| |
| See :class:`~torch.ao.nn.quantized.Conv2d` for details and output shape. |
| |
| Args: |
| input: quantized input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` |
| weight: quantized filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)` |
| bias: **non-quantized** bias tensor of shape :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. |
| stride: the stride of the convolving kernel. Can be a single number or a |
| tuple `(sH, sW)`. Default: 1 |
| padding: implicit paddings on both sides of the input. Can be a |
| single number or a tuple `(padH, padW)`. Default: 0 |
| dilation: the spacing between kernel elements. Can be a single number or |
| a tuple `(dH, dW)`. Default: 1 |
| groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the |
| number of groups. Default: 1 |
| padding_mode: the padding mode to use. Only "zeros" is supported for quantized convolution at the moment. Default: "zeros" |
| scale: quantization scale for the output. Default: 1.0 |
| zero_point: quantization zero_point for the output. Default: 0 |
| dtype: quantization data type to use. Default: ``torch.quint8`` |
| |
| Examples:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE) |
| >>> from torch.ao.nn.quantized import functional as qF |
| >>> filters = torch.randn(8, 4, 3, 3, dtype=torch.float) |
| >>> inputs = torch.randn(1, 4, 5, 5, dtype=torch.float) |
| >>> bias = torch.randn(8, dtype=torch.float) |
| >>> |
| >>> scale, zero_point = 1.0, 0 |
| >>> dtype_inputs = torch.quint8 |
| >>> dtype_filters = torch.qint8 |
| >>> |
| >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) |
| >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) |
| >>> qF.conv2d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) |
| """ # noqa: E501 |
| if padding_mode != 'zeros': |
| raise NotImplementedError("Only zero-padding is supported!") |
| if input.dtype != torch.quint8: |
| raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") |
| if weight.dtype != torch.qint8: |
| raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") |
| if input.ndim != 4: |
| raise ValueError("Input shape must be `(N, C, H, W)`!") |
| stride = _pair(stride) |
| padding = _pair(padding) |
| dilation = _pair(dilation) |
| |
| packed_params = torch.ops.quantized.conv2d_prepack( |
| weight, bias, stride, padding, dilation, groups) |
| return torch.ops.quantized.conv2d(input, packed_params, scale, zero_point) |
| |
| def conv3d(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, |
| padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8): |
| r""" |
| Applies a 3D convolution over a quantized 3D input composed of several input |
| planes. |
| |
| See :class:`~torch.ao.nn.quantized.Conv3d` for details and output shape. |
| |
| Args: |
| input: quantized input tensor of shape |
| :math:`(\text{minibatch} , \text{in\_channels} , iD , iH , iW)` |
| weight: quantized filters of shape |
| :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kD , kH , kW)` |
| bias: **non-quantized** bias tensor of shape |
| :math:`(\text{out\_channels})`. The tensor type must be `torch.float`. |
| stride: the stride of the convolving kernel. Can be a single number or a |
| tuple `(sD, sH, sW)`. Default: 1 |
| padding: implicit paddings on both sides of the input. Can be a |
| single number or a tuple `(padD, padH, padW)`. Default: 0 |
| dilation: the spacing between kernel elements. Can be a single number or |
| a tuple `(dD, dH, dW)`. Default: 1 |
| groups: split input into groups, :math:`\text{in\_channels}` should be |
| divisible by the number of groups. Default: 1 |
| padding_mode: the padding mode to use. Only "zeros" is supported for |
| quantized convolution at the moment. Default: "zeros" |
| scale: quantization scale for the output. Default: 1.0 |
| zero_point: quantization zero_point for the output. Default: 0 |
| dtype: quantization data type to use. Default: ``torch.quint8`` |
| |
| Examples:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE) |
| >>> from torch.ao.nn.quantized import functional as qF |
| >>> filters = torch.randn(8, 4, 3, 3, 3, dtype=torch.float) |
| >>> inputs = torch.randn(1, 4, 5, 5, 5, dtype=torch.float) |
| >>> bias = torch.randn(8, dtype=torch.float) |
| >>> |
| >>> scale, zero_point = 1.0, 0 |
| >>> dtype_inputs = torch.quint8 |
| >>> dtype_filters = torch.qint8 |
| >>> |
| >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) |
| >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) |
| >>> qF.conv3d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point) |
| """ # noqa: E501 |
| if padding_mode != 'zeros': |
| raise NotImplementedError("Only zero-padding is supported!") |
| if input.dtype != torch.quint8: |
| raise NotImplementedError("Only torch.quint8 is supported for activation tensor!") |
| if weight.dtype != torch.qint8: |
| raise NotImplementedError("Only torch.qint8 is supported for weight tensor!") |
| if input.ndim != 5: |
| raise ValueError("Input shape must be `(N, C, D, H, W)`!") |
| stride = _triple(stride) |
| padding = _triple(padding) |
| dilation = _triple(dilation) |
| |
| packed_params = torch.ops.quantized.conv3d_prepack( |
| weight, bias, stride, padding, dilation, groups) |
| return torch.ops.quantized.conv3d(input, packed_params, scale, zero_point) |
| |
| def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None): |
| r"""Down/up samples the input to either the given :attr:`size` or the given |
| :attr:`scale_factor` |
| |
| See :func:`torch.nn.functional.interpolate` for implementation details. |
| |
| The input dimensions are interpreted in the form: |
| `mini-batch x channels x [optional depth] x [optional height] x width`. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| .. note:: Only 2D/3D input is supported for quantized inputs |
| |
| .. note:: Only the following modes are supported for the quantized inputs: |
| |
| - `bilinear` |
| - `nearest` |
| |
| Args: |
| input (Tensor): the input tensor |
| size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): |
| output spatial size. |
| scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple. |
| mode (str): algorithm used for upsampling: |
| ``'nearest'`` | ``'bilinear'`` |
| align_corners (bool, optional): Geometrically, we consider the pixels of the |
| input and output as squares rather than points. |
| If set to ``True``, the input and output tensors are aligned by the |
| center points of their corner pixels, preserving the values at the corner pixels. |
| If set to ``False``, the input and output tensors are aligned by the corner |
| points of their corner pixels, and the interpolation uses edge value padding |
| for out-of-boundary values, making this operation *independent* of input size |
| when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` |
| is ``'bilinear'``. |
| Default: ``False`` |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.interpolate' must be quantized!") |
| return torch.nn.functional.interpolate(input, size, scale_factor, mode, |
| align_corners) |
| |
| def linear( |
| input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, |
| scale: Optional[float] = None, zero_point: Optional[int] = None |
| ) -> Tensor: |
| r""" |
| Applies a linear transformation to the incoming quantized data: |
| :math:`y = xA^T + b`. |
| See :class:`~torch.ao.nn.quantized.Linear` |
| |
| .. note:: |
| |
| Current implementation packs weights on every call, which has penalty on performance. |
| If you want to avoid the overhead, use :class:`~torch.ao.nn.quantized.Linear`. |
| |
| Args: |
| input (Tensor): Quantized input of type `torch.quint8` |
| weight (Tensor): Quantized weight of type `torch.qint8` |
| bias (Tensor): None or fp32 bias of type `torch.float` |
| scale (double): output scale. If None, derived from the input scale |
| zero_point (long): output zero point. If None, derived from the input zero_point |
| |
| Shape: |
| - Input: :math:`(N, *, in\_features)` where `*` means any number of |
| additional dimensions |
| - Weight: :math:`(out\_features, in\_features)` |
| - Bias: :math:`(out\_features)` |
| - Output: :math:`(N, *, out\_features)` |
| """ |
| if scale is None: |
| scale = input.q_scale() |
| if zero_point is None: |
| zero_point = input.q_zero_point() |
| _packed_params = torch.ops.quantized.linear_prepack(weight, bias) |
| return torch.ops.quantized.linear(input, _packed_params, scale, zero_point) |
| |
| def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, |
| ceil_mode=False, return_indices=False): |
| r"""Applies a 1D max pooling over a quantized input signal composed of |
| several quantized input planes. |
| |
| .. note:: The input quantization parameters are propagated to the output. |
| |
| See :class:`~torch.ao.nn.quantized.MaxPool1d` for details. |
| """ |
| if return_indices: |
| raise NotImplementedError("return_indices is not yet implemented!") |
| if stride is None: |
| stride = torch.jit.annotate(List[int], []) |
| return torch.nn.functional.max_pool1d(input, kernel_size, stride, padding, |
| dilation, ceil_mode=ceil_mode, return_indices=return_indices) |
| |
| def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, |
| ceil_mode=False, return_indices=False): |
| r"""Applies a 2D max pooling over a quantized input signal composed of |
| several quantized input planes. |
| |
| .. note:: The input quantization parameters are propagated to the output. |
| |
| See :class:`~torch.ao.nn.quantized.MaxPool2d` for details. |
| """ |
| if return_indices: |
| raise NotImplementedError("return_indices is not yet implemented!") |
| if stride is None: |
| stride = torch.jit.annotate(List[int], []) |
| return torch.nn.functional.max_pool2d(input, kernel_size, stride, padding, |
| dilation, ceil_mode=ceil_mode, return_indices=return_indices) |
| |
| def celu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor: |
| r"""celu(input, scale, zero_point, alpha=1.) -> Tensor |
| |
| Applies the quantized CELU function element-wise. |
| |
| .. math:: |
| \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x / \alpha) - 1)) |
| |
| Args: |
| input: quantized input |
| alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.celu' must be quantized!") |
| return torch.ops.quantized.celu(input, scale, zero_point, alpha) |
| |
| |
| def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False, |
| scale: Optional[float] = None, zero_point: Optional[int] = None): |
| r""" |
| Quantized version of the. |
| leaky_relu(input, negative_slope=0.01, inplace=False, scale, zero_point) -> Tensor |
| |
| Applies element-wise, |
| :math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)` |
| |
| Args: |
| input: Quantized input |
| negative_slope: The slope of the negative input |
| inplace: Inplace modification of the input tensor |
| scale, zero_point: Scale and zero point of the output tensor. |
| |
| See :class:`~torch.nn.LeakyReLU` for more details. |
| """ |
| if scale is not None and zero_point is not None: |
| assert not inplace, "Cannot rescale with `inplace`" |
| output = torch._empty_affine_quantized( |
| input.shape, scale=scale, zero_point=int(zero_point), dtype=input.dtype) |
| torch._C._nn.leaky_relu(input, negative_slope, out=output) |
| return output |
| if inplace: |
| result = torch._C._nn.leaky_relu_(input, negative_slope) |
| else: |
| result = torch._C._nn.leaky_relu(input, negative_slope) |
| return result |
| |
| def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: |
| r"""This is the quantized version of :func:`~torch.nn.functional.hardtanh`. |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.hardtanh' must be quantized!") |
| if inplace: |
| return torch._C._nn.hardtanh_(input, min_val, max_val) |
| return torch._C._nn.hardtanh(input, min_val, max_val) |
| |
| def hardswish(input: Tensor, scale: float, zero_point: int) -> Tensor: |
| r"""This is the quantized version of :func:`~torch.nn.functional.hardswish`. |
| |
| Args: |
| input: quantized input |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.hardswish' must be quantized!") |
| return torch._ops.ops.quantized.hardswish(input, scale, zero_point) |
| |
| def threshold(input: Tensor, threshold: float, value: float) -> Tensor: |
| r"""Applies the quantized version of the threshold function element-wise: |
| |
| .. math:: |
| x = \begin{cases} |
| x & \text{if~} x > \text{threshold} \\ |
| \text{value} & \text{otherwise} |
| \end{cases} |
| |
| See :class:`~torch.nn.Threshold` for more details. |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.threshold' must be quantized!") |
| if threshold is None: |
| raise ValueError("Input to 'threshold' must be specified!") |
| if value is None: |
| raise ValueError("Input to 'value' must be specified!") |
| return torch._ops.ops.quantized.threshold(input, threshold, value) |
| |
| def elu(input: Tensor, scale: float, zero_point: int, alpha: float = 1.) -> Tensor: |
| r"""This is the quantized version of :func:`~torch.nn.functional.elu`. |
| |
| Args: |
| input: quantized input |
| scale: quantization scale of the output tensor |
| zero_point: quantization zero point of the output tensor |
| alpha: the alpha constant |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.elu' must be quantized!") |
| return torch.ops.quantized.elu(input, scale, zero_point, alpha) |
| |
| def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: |
| r"""This is the quantized version of :func:`~torch.nn.functional.hardsigmoid`. |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.hardsigmoid' must be quantized!") |
| if inplace: |
| return torch._C._nn.hardsigmoid_(input) # type: ignore[attr-defined] |
| return torch._C._nn.hardsigmoid(input) |
| |
| def clamp(input: Tensor, min_: float, max_: float) -> Tensor: |
| r"""float(input, min\_, max\_) -> Tensor |
| |
| Applies the clamp function element-wise. |
| See :class:`~torch.ao.nn.quantized.clamp` for more details. |
| |
| Args: |
| input: quantized input |
| min_: minimum value for clamping |
| max_: maximum value for clamping |
| """ |
| if not input.is_quantized: |
| raise ValueError("Input to 'quantized.clamp' must be quantized!") |
| return torch.clamp(input, min_, max_) |
| |
| def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None): |
| r"""Upsamples the input to either the given :attr:`size` or the given |
| :attr:`scale_factor` |
| |
| .. warning:: |
| This function is deprecated in favor of |
| :func:`torch.ao.nn.quantized.functional.interpolate`. |
| This is equivalent with ``nn.quantized.functional.interpolate(...)``. |
| |
| See :func:`torch.nn.functional.interpolate` for implementation details. |
| |
| The input dimensions are interpreted in the form: |
| `mini-batch x channels x [optional depth] x [optional height] x width`. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| .. note:: Only 2D input is supported for quantized inputs |
| |
| .. note:: Only the following modes are supported for the quantized inputs: |
| |
| - `bilinear` |
| - `nearest` |
| |
| Args: |
| input (Tensor): quantized input tensor |
| size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): |
| output spatial size. |
| scale_factor (float or Tuple[float]): multiplier for spatial size. Has to be an integer. |
| mode (str): algorithm used for upsampling: |
| ``'nearest'`` | ``'bilinear'`` |
| align_corners (bool, optional): Geometrically, we consider the pixels of the |
| input and output as squares rather than points. |
| If set to ``True``, the input and output tensors are aligned by the |
| center points of their corner pixels, preserving the values at the corner pixels. |
| If set to ``False``, the input and output tensors are aligned by the corner |
| points of their corner pixels, and the interpolation uses edge value padding |
| for out-of-boundary values, making this operation *independent* of input size |
| when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` |
| is ``'bilinear'``. |
| Default: ``False`` |
| |
| .. warning:: |
| With ``align_corners = True``, the linearly interpolating modes |
| (`bilinear`) don't proportionally align the |
| output and input pixels, and thus the output values can depend on the |
| input size. This was the default behavior for these modes up to version |
| 0.3.1. Since then, the default behavior is ``align_corners = False``. |
| See :class:`~torch.nn.Upsample` for concrete examples on how this |
| affects the outputs. |
| """ |
| warnings.warn("nn.quantized.functional.upsample is deprecated. Use nn.quantized.functional.interpolate instead.") |
| return interpolate(input, size, scale_factor, mode, align_corners) |
| |
| def upsample_bilinear(input, size=None, scale_factor=None): |
| r"""Upsamples the input, using bilinear upsampling. |
| |
| .. warning:: |
| This function is deprecated in favor of |
| :func:`torch.ao.nn.quantized.functional.interpolate`. |
| This is equivalent with |
| ``nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)``. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| .. note:: Only 2D inputs are supported |
| |
| Args: |
| input (Tensor): quantized input |
| size (int or Tuple[int, int]): output spatial size. |
| scale_factor (int or Tuple[int, int]): multiplier for spatial size |
| """ |
| # DeprecationWarning is ignored by default |
| warnings.warn("nn.quantized.functional.upsample_bilinear is deprecated. Use nn.quantized.functional.interpolate instead.") |
| return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True) |
| |
| def upsample_nearest(input, size=None, scale_factor=None): |
| r"""Upsamples the input, using nearest neighbours' pixel values. |
| |
| .. warning:: |
| This function is deprecated in favor of |
| :func:`torch.ao.nn.quantized.functional.interpolate`. |
| This is equivalent with ``nn.quantized.functional.interpolate(..., mode='nearest')``. |
| |
| .. note:: The input quantization parameters propagate to the output. |
| |
| .. note:: Only 2D inputs are supported |
| |
| Args: |
| input (Tensor): quantized input |
| size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial |
| size. |
| scale_factor (int): multiplier for spatial size. Has to be an integer. |
| """ |
| # DeprecationWarning is ignored by default |
| warnings.warn("nn.quantized.functional.upsample_nearest is deprecated. Use nn.quantized.functional.interpolate instead.") |
| return interpolate(input, size, scale_factor, mode='nearest') |