blob: 5060f9289a9e145836741fc31a5d417a828256a0 [file] [log] [blame]
#include <torch/csrc/cuda/python_nccl.h>
#include <ATen/core/functional.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/utils/pybind.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/irange.h>
using namespace at;
using namespace torch;
using namespace torch::cuda::nccl;
using namespace torch::cuda::nccl::detail;
static const char* COMM_CAPSULE_NAME = "torch.cuda.nccl.Communicator";
PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args) {
return PyLong_FromUnsignedLongLong(version());
}
PyObject* THCPModule_nccl_version_suffix(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
return PyBytes_FromString(version_suffix());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
ncclUniqueId id;
get_unique_id(id);
return PyBytes_FromStringAndSize((char*)&id, NCCL_UNIQUE_ID_BYTES);
END_HANDLE_TH_ERRORS
}
static ncclComm_t unpack_nccl_comm(PyObject* capsule) {
ncclComm_t comm =
(ncclComm_t)PyCapsule_GetPointer(capsule, COMM_CAPSULE_NAME);
if (!comm)
throw python_error();
return comm;
}
static void destroy_nccl_comm(PyObject* capsule) {
HANDLE_TH_ERRORS
ncclComm_t comm = unpack_nccl_comm(capsule);
{
pybind11::gil_scoped_release no_gil;
comm_destroy(comm);
}
END_HANDLE_TH_ERRORS_RET()
}
static std::vector<std::optional<at::cuda::CUDAStream>> unpack_streams(
PyObject* obj,
size_t size) {
if (obj == Py_None) {
return std::vector<std::optional<at::cuda::CUDAStream>>(size, c10::nullopt);
}
auto streams = THPUtils_PySequence_to_CUDAStreamList(obj);
if (streams.size() != size) {
throw std::runtime_error(
"number of streams is not equal to number of inputs");
}
return streams;
}
static inline at::Tensor extract_tensor(PyObject* obj);
static inline std::vector<at::Tensor> extract_tensors(PyObject* obj);
static std::vector<ncclComm_t> unpack_comms(PyObject* obj, size_t size) {
if (obj == Py_None) {
return std::vector<ncclComm_t>();
}
std::vector<ncclComm_t> comms;
if (PyCapsule_CheckExact(obj)) {
comms = {unpack_nccl_comm(obj)};
} else {
auto seq = THPObjectPtr(PySequence_Fast(obj, "comm is not a sequence"));
if (!seq)
throw python_error();
auto size = PySequence_Fast_GET_SIZE(seq.get());
comms = std::vector<ncclComm_t>(size);
for (const auto i : c10::irange(size)) {
comms[i] = unpack_nccl_comm(PySequence_Fast_GET_ITEM(seq.get(), i));
}
}
if (comms.size() != size) {
throw std::runtime_error(
"number of communicators is not equal to number of inputs");
}
return comms;
}
PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
int nranks = 0;
const char* id = nullptr;
Py_ssize_t id_len = 0;
int rank = 0;
if (!PyArg_ParseTuple(
args, "is#i:nccl_init_rank", &nranks, &id, &id_len, &rank)) {
return nullptr;
}
TORCH_CHECK(
id_len == NCCL_UNIQUE_ID_BYTES,
"invalid unqiue_id (expected ",
NCCL_UNIQUE_ID_BYTES,
" bytes, got ",
id_len,
")");
ncclUniqueId commId;
memcpy(&commId, id, NCCL_UNIQUE_ID_BYTES);
ncclComm_t comm = nullptr;
{
pybind11::gil_scoped_release no_gil;
comm = comm_init_rank(nranks, commId, rank);
}
return PyCapsule_New(comm, COMM_CAPSULE_NAME, &destroy_nccl_comm);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs = nullptr, *_output = nullptr, *_streams = nullptr,
*_comms = nullptr;
int root = 0, op = 0;
if (!PyArg_ParseTuple(
args, "OOiiOO", &_inputs, &_output, &root, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce",
1,
"(sequence[Tensor] inputs, Tensor output, int root,"
" int op, sequence[torch.cuda.Stream or None]");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
auto output = extract_tensor(_output);
std::vector<std::optional<at::cuda::CUDAStream>> streams =
unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
torch::cuda::nccl::reduce(inputs, output, root, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs = nullptr, *_outputs = nullptr, *_streams = nullptr,
*_comms = nullptr;
int op = 0;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_reduce",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op,"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
all_reduce(inputs, outputs, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs = nullptr, *_streams = nullptr, *_comms = nullptr;
int root = 0;
if (!PyArg_ParseTuple(args, "OiOO", &_inputs, &root, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_broadcast",
1,
"(sequence[Tensor] inputs, int root"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
TORCH_CHECK(root >= 0 && (size_t)root < inputs.size(), "invalid root");
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
torch::cuda::nccl::broadcast(inputs, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs = nullptr, *_outputs = nullptr, *_streams = nullptr,
*_comms = nullptr;
if (!PyArg_ParseTuple(
args, "OOOO", &_inputs, &_outputs, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_all_gather",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
all_gather(inputs, outputs, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject *_inputs = nullptr, *_outputs = nullptr, *_streams = nullptr,
*_comms = nullptr;
int op = 0;
if (!PyArg_ParseTuple(
args, "OOiOO", &_inputs, &_outputs, &op, &_streams, &_comms)) {
THPUtils_invalidArguments(
args,
nullptr,
"nccl_reduce_scatter",
1,
"(sequence[Tensor] inputs, sequence[Tensor] outputs, int op"
" sequence[torch.cuda.Stream] streams,"
" sequence[torch.cuda.nccl.Communicator] comms)");
return nullptr;
}
std::vector<at::Tensor> inputs = extract_tensors(_inputs);
std::vector<at::Tensor> outputs = extract_tensors(_outputs);
auto streams = unpack_streams(_streams, inputs.size());
auto user_comms = unpack_comms(_comms, inputs.size());
{
pybind11::gil_scoped_release no_gil;
reduce_scatter(inputs, outputs, op, streams, user_comms);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static inline at::Tensor extract_tensor(PyObject* obj) {
TORCH_CHECK_TYPE(
THPVariable_Check(obj),
"expected Tensor (got ",
Py_TYPE(obj)->tp_name,
")");
return THPVariable_Unpack(obj);
}
static inline std::vector<at::Tensor> extract_tensors(PyObject* obj) {
auto seq = THPObjectPtr(PySequence_Fast(obj, "expected a sequence"));
if (!seq)
throw python_error();
const Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
std::vector<at::Tensor> list;
if (length >= 0) {
list.reserve(length);
}
for (Py_ssize_t i = 0; i < length; i++) {
PyObject* item = PySequence_Fast_GET_ITEM(seq.get(), i);
TORCH_CHECK_TYPE(
THPVariable_Check(item),
"expected Tensor at ",
i,
" (got ",
Py_TYPE(item)->tp_name,
")");
list.emplace_back(THPVariable_Unpack(item));
}
return list;
}