blob: 53da5a634746c2ceb5c91ef6c4ab086e6cc6fde9 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/WrapDimUtils.h>
#include <torch/csrc/utils/python_raii.h>
#include <torch/python.h>
#include <ATen/functorch/BatchRulesHelper.h>
#include <ATen/functorch/BatchedFallback.h>
#include <ATen/functorch/BatchedTensorImpl.h>
#include <ATen/functorch/DynamicLayer.h>
#include <ATen/functorch/Interpreter.h>
#include <ATen/functorch/LegacyVmapTransforms.h>
#include <ATen/functorch/PlumbingHelper.h>
#include <ATen/functorch/TensorWrapper.h>
#include <c10/core/AutogradState.h>
#include <iostream>
// This file contains functorch's Python bindings.
namespace torch::functorch::impl {
using namespace at::functorch;
static bool has_level(const Tensor& self, int64_t level) {
const auto* batched = maybeGetBatchedImpl(self);
if (!batched) {
return false;
}
return batched->level() >= level;
}
Tensor _add_batch_dim(const Tensor& self, int64_t batch_dim, int64_t level) {
return addBatchDim(self, batch_dim, level);
}
Tensor _wrap_functional_tensor(const Tensor& self, int64_t level) {
auto t = at::functionalization::impl::to_functional_tensor(self);
at::functionalization::impl::unsafeGetFunctionalWrapper(t)->set_level(level);
return t;
}
void _assert_wrapped_functional(
const Tensor& unwrapped,
const Tensor& wrapped) {
TORCH_INTERNAL_ASSERT(
at::functionalization::impl::isFunctionalTensor(wrapped));
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(unwrapped));
auto wrapped_impl =
at::functionalization::impl::unsafeGetFunctionalWrapper(wrapped);
auto& wrapped_inner = wrapped_impl->value();
TORCH_INTERNAL_ASSERT(
unwrapped.unsafeGetTensorImpl() == wrapped_inner.unsafeGetTensorImpl())
}
void _propagate_functional_input_mutation(
const Tensor& unwrapped,
const Tensor& wrapped) {
TORCH_INTERNAL_ASSERT(
at::functionalization::impl::isFunctionalTensor(wrapped));
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(unwrapped));
auto wrapped_impl =
at::functionalization::impl::unsafeGetFunctionalWrapper(wrapped);
// Ensure that the input is up to date by committing any pending updates to
// the alias.
wrapped_impl->sync_();
auto& wrapped_inner = wrapped_impl->value();
// It would probably be more reasonable to check that the two tensors are
// aliased, but we can't do that unless we give BatchedTensorImpl a notion of
// storage.
if (unwrapped.unsafeGetTensorImpl() == wrapped_inner.unsafeGetTensorImpl()) {
} else {
if (unwrapped.sym_nbytes() != wrapped_inner.sym_nbytes()) {
// Functions might resize zero-sized inputs, which we need to reflect
// ehre.
unwrapped.resize__symint(wrapped_inner.sym_sizes());
}
// If the input tensor's metadata was mutated, then use as_strided_()
// to propagate the metadata change.
if (unwrapped.sym_sizes() != wrapped_inner.sym_sizes()) {
unwrapped.as_strided__symint(
wrapped_inner.sym_sizes(), wrapped_inner.sym_strides());
}
unwrapped.copy_(wrapped_inner);
}
}
static std::pair<Tensor, int64_t> remove_existing_batch_dim(
const BatchedTensorImpl* batched,
int64_t level) {
TORCH_INTERNAL_ASSERT(batched->level() == level);
return std::make_pair(batched->value(), batched->bdim());
}
// Poor man's version of np.moveaxis. Moves the dimension at `dst` to `src`
// while preserving the order of other existing dimensions.
// We should probably add np.moveaxis (it is more general) to PyTorch. (#36048)
// When we do, replace the following with it.
static Tensor _movedim(const Tensor& self, int64_t src, int64_t dst) {
auto logical_dim = self.dim();
src = at::maybe_wrap_dim(src, logical_dim);
dst = at::maybe_wrap_dim(dst, logical_dim);
if (src == dst) {
return self;
}
VmapDimVector permutation;
permutation.reserve(logical_dim);
for (int64_t dim = 0; dim < logical_dim; dim++) {
if (dim == src) {
continue;
}
permutation.push_back(dim);
}
permutation.insert(permutation.begin() + dst, src);
return self.permute(permutation);
}
// Removes the batch dim with level `level` from `self`. If this causes the
// last batch dim to be removed from a BatchedTensor, then this returns a
// regular Tensor.
//
// If the `level` of the batch dim to remove does not exist in `self`, then we
// add the batch dim in. This can happen if `self` didn't interact with a tensor
// inside the vmap level, for example,
// self = torch.randn(3)
// y = torch.randn(5)
// out = vmap(lambda x: vmap(lambda y: x)(y))(self)
// assert out.shape == (3, 5)
// Inside the inner vmap, `x` is a BatchedTensor with a single batch dimension
// corresponding to the *outer* vmap level and it doesn't have any dimensions
// that correspond to the inner vmap level so we need to create one for the
// user.
//
// `out_dim` controls where we should put the batch dimension in the output
// tensor.
Tensor _remove_batch_dim(
const Tensor& self,
int64_t level,
int64_t batch_size,
int64_t out_dim) {
TORCH_CHECK(
out_dim == 0 || !self.key_set().has(DispatchKey::BatchedNestedTensor),
"Nested tensors can only be vmapped over dim=0, but got dim=",
out_dim);
if (!has_level(self, level)) {
auto self_sizes = self.sizes();
VmapDimVector expanded_sizes(self_sizes.begin(), self_sizes.end());
expanded_sizes.insert(expanded_sizes.begin() + out_dim, batch_size);
auto result = self.expand(expanded_sizes);
return result;
}
// Must be batched if has_level(self, /*any_level*/)
const auto* batched = maybeGetBatchedImpl(self);
TORCH_INTERNAL_ASSERT(batched != nullptr);
auto [self_without_bdim, newly_exposed_logical_dim] =
remove_existing_batch_dim(batched, level);
auto result = _movedim(self_without_bdim, newly_exposed_logical_dim, out_dim);
return result;
}
Tensor _unwrap_functional_tensor(const Tensor& self, bool add_back_views) {
// We only ever call that after popping out of a functionalize() call, in
// which case the current tensors should always be wrapped in a
// FunctionalTensorWrapper.
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(self));
auto functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(self);
// when regenerating the (potentially mutated) input tensors, the
// functionalization pass regenerates them through a series of view_copy() op
// calls. Functorch wants to turn those back into view ops though. Ensure that
// the input is up to date by committing any pending updates to the alias.
at::functionalization::impl::FunctionalizationReapplyViewsGuard guard(
add_back_views);
bool any_updates = functional->apply_updates();
if (any_updates) {
functional->regenerate_from_base();
}
return functional->value();
}
Tensor _wrap_for_grad(const Tensor& self, int64_t level) {
// NB: different behavior inside??
// return self;
// TORCH_INTERNAL_ASSERT(!maybeGetTensorWrapper(self));
// TORCH_INTERNAL_ASSERT(self.has_storage());
return makeTensorWrapper(self, level);
}
Tensor _unwrap_for_grad(const Tensor& self, int64_t level) {
auto* result = maybeGetTensorWrapper(self);
if (!result) {
return self;
}
TORCH_INTERNAL_ASSERT(result->level().has_value());
if (result->level() == level) {
return result->value();
}
return self;
}
int64_t dlevel(const Tensor& tensor) {
auto* wrapped = maybeGetTensorWrapper(tensor);
if (!wrapped) {
return 0;
}
if (!wrapped->is_alive()) {
return -1;
}
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
return wrapped->level().value();
}
bool dump_tensor(const Tensor& self) {
dumpTensorCout(self);
return true;
}
RandomnessType get_randomness_enum(const std::string& randomness) {
if (randomness == "error") {
return RandomnessType::Error;
} else if (randomness == "same") {
return RandomnessType::Same;
} else if (randomness == "different") {
return RandomnessType::Different;
} else {
TORCH_CHECK(
false, "randomness argument must be error, same, or different.");
}
}
int64_t _grad_increment_nesting() {
// See NOTE [grad and vjp interaction with no_grad]
bool prev_grad_mode = c10::GradMode::is_enabled();
return initAndPushDynamicLayer(
TransformType::Grad, c10::nullopt, c10::nullopt, prev_grad_mode);
}
int64_t _grad_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Grad);
return layer.layerId();
}
int64_t _jvp_increment_nesting() {
// See NOTE [grad and vjp interaction with no_grad]
bool prev_fwd_grad_mode =
c10::AutogradState::get_tls_state().get_fw_grad_mode();
return initAndPushDynamicLayer(
TransformType::Jvp,
c10::nullopt,
c10::nullopt,
c10::nullopt,
prev_fwd_grad_mode);
}
int64_t _jvp_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Jvp);
return layer.layerId();
}
int64_t _vmap_increment_nesting(
c10::SymInt batch_size,
const std::string& randomness) {
return initAndPushDynamicLayer(
TransformType::Vmap,
std::move(batch_size),
get_randomness_enum(randomness));
}
int64_t _vmap_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Vmap);
return layer.layerId();
}
int64_t _func_increment_nesting(bool reapply_views) {
return initAndPushDynamicLayer(
TransformType::Functionalize,
c10::nullopt,
c10::nullopt,
c10::nullopt,
c10::nullopt,
/*functionalize_add_back_views=*/reapply_views);
}
int64_t _func_decrement_nesting() {
auto layer = popDynamicLayerAndDeleteMetadata();
TORCH_INTERNAL_ASSERT(layer.key() == TransformType::Functionalize);
return layer.layerId();
}
static bool is_batchedtensor(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
return batched != nullptr;
}
static bool is_legacy_batchedtensor(const Tensor& tensor) {
return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
}
static bool is_gradtrackingtensor(const Tensor& tensor) {
auto* wrapped = maybeGetTensorWrapper(tensor);
return wrapped != nullptr;
}
static bool is_functionaltensor(const Tensor& tensor) {
return tensor.unsafeGetTensorImpl()->key_set().has(
c10::DispatchKey::Functionalize);
}
static Tensor get_unwrapped(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->value();
}
auto* wrapped = maybeGetTensorWrapper(tensor);
if (wrapped) {
return wrapped->value();
}
if (at::functionalization::impl::isFunctionalTensor(tensor)) {
auto* functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(tensor);
return functional->value();
}
TORCH_CHECK(false, "No wrappers present!");
}
static int64_t maybe_get_level(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->level();
}
auto* wrapped = maybeGetTensorWrapper(tensor);
if (wrapped) {
if (wrapped->level()) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
return *wrapped->level();
}
// TODO: this is a weird special case...
return -2;
}
if (at::functionalization::impl::isFunctionalTensor(tensor)) {
auto* functional =
at::functionalization::impl::unsafeGetFunctionalWrapper(tensor);
return functional->level();
}
return -1;
}
static int64_t maybe_get_bdim(const Tensor& tensor) {
auto* batched = maybeGetBatchedImpl(tensor);
if (batched) {
return batched->bdim();
}
return -1;
}
static int64_t currentLevel() {
auto maybe_layer = maybeCurrentDynamicLayer();
TORCH_INTERNAL_ASSERT(maybe_layer.has_value());
int64_t current_level = maybe_layer->layerId();
return current_level;
}
static std::optional<int64_t> maybe_current_level() {
auto maybe_layer = maybeCurrentDynamicLayer();
if (maybe_layer.has_value()) {
int64_t current_level = maybe_layer->layerId();
return current_level;
}
return nullopt;
}
static void tls_set_vmap_excluded(bool excluded) {
c10::impl::tls_set_dispatch_key_excluded(
c10::DispatchKey::FuncTorchBatched, excluded);
}
static void _set_dynamic_layer_keys_included(bool value) {
return setDynamicLayerFrontBackKeysIncluded(value);
}
static void dump_dls() {
std::cout << getDynamicLayerStack() << std::endl;
}
static void dump_local_tls() {
auto tls = c10::impl::tls_local_dispatch_key_set();
std::cout << "[Local Include] " << tls.included_ << std::endl;
std::cout << "[Local Exclude] " << tls.excluded_ << std::endl;
}
namespace {
// Pop the DynamicLayer stack until it's at the given depth.
void popDynamicLayerStackToDepth(size_t depth) {
while (at::functorch::getDynamicLayerStack().size() > depth) {
const auto top = popDynamicLayer();
switch (top.key()) {
case at::functorch::TransformType::Vmap:
_vmap_decrement_nesting();
break;
case at::functorch::TransformType::Grad:
_grad_decrement_nesting();
break;
case at::functorch::TransformType::Jvp:
_jvp_decrement_nesting();
break;
case at::functorch::TransformType::Functionalize:
_func_decrement_nesting();
break;
case at::functorch::TransformType::Torch:
popDynamicLayerAndDeleteMetadata();
break;
}
}
}
} // anonymous namespace
static std::tuple<Tensor, std::optional<int64_t>> unwrapBatched(
const Tensor& tensor,
int64_t level) {
auto* batched = maybeGetBatchedImpl(tensor);
if (!batched) {
return std::make_tuple(tensor, nullopt);
}
if (batched->level() == level) {
return std::make_tuple(batched->value(), batched->bdim());
}
return std::make_tuple(tensor, nullopt);
}
void initFuncTorchBindings(PyObject* module) {
auto _C = py::handle(module).cast<py::module>();
auto m = _C.def_submodule("_functorch");
m.def("_add_batch_dim", &_add_batch_dim, "add batch dim");
m.def("_remove_batch_dim", &_remove_batch_dim, "remove batch dim");
m.def("_unwrap_batched", &unwrapBatched);
m.def(
"_wrap_functional_tensor",
&_wrap_functional_tensor,
"add functional tensor");
m.def(
"_assert_wrapped_functional",
&_assert_wrapped_functional,
"assert wrapped functional");
m.def(
"_propagate_functional_input_mutation",
&_propagate_functional_input_mutation,
"propagate functional input mutations");
m.def(
"_unwrap_functional_tensor",
&_unwrap_functional_tensor,
"remove functional tensor");
m.def("_vmap_increment_nesting", &_vmap_increment_nesting);
m.def("_vmap_decrement_nesting", &_vmap_decrement_nesting);
m.def(
"_func_increment_nesting",
&_func_increment_nesting,
"functionalization start");
m.def(
"_func_decrement_nesting",
&_func_decrement_nesting,
"functionalization end");
m.def("_grad_increment_nesting", &_grad_increment_nesting);
m.def("_grad_decrement_nesting", &_grad_decrement_nesting);
m.def("_jvp_increment_nesting", &_jvp_increment_nesting);
m.def("_jvp_decrement_nesting", &_jvp_decrement_nesting);
m.def("_wrap_for_grad", &_wrap_for_grad, "wrap as gradtrackingtensor");
m.def(
"_unwrap_for_grad", &_unwrap_for_grad, "unwrap from gradtrackingtensor");
m.def(
"_set_vmap_fallback_warning_enabled",
&at::functorch::setVmapFallbackWarningEnabled,
"Set vmap fallback warnings");
m.def("_set_vmap_fallback_enabled", &at::functorch::setVmapFallbackEnabled);
m.def("_is_vmap_fallback_enabled", &at::functorch::isVmapFallbackEnabled);
m.def(
"set_inplace_requires_grad_allowed",
&at::functorch::setInplaceRequiresGradAllowed);
m.def(
"get_inplace_requires_grad_allowed",
&at::functorch::getInplaceRequiresGradAllowed);
m.def(
"set_single_level_autograd_function_allowed",
&at::functorch::setSingleLevelAutogradFunctionAllowed);
m.def(
"get_single_level_autograd_function_allowed",
&at::functorch::getSingleLevelAutogradFunctionAllowed);
m.def("unwrap_if_dead", &unwrapIfDead);
m.def("is_dead_tensor_wrapper", &isDeadTensorWrapper);
m.def("dlevel", &dlevel, "dlevel");
m.def("dump_tensor", &dump_tensor, "dump_tensor");
m.def("reshape_dim_into", &at::functorch::reshape_dim_into);
m.def("reshape_dim_outof", &at::functorch::reshape_dim_outof);
// various debugging things. Maybe we should offer these as first-class APIs
// on Tensors?
m.def("is_batchedtensor", &is_batchedtensor);
m.def("is_legacy_batchedtensor", &is_legacy_batchedtensor);
m.def("is_gradtrackingtensor", &is_gradtrackingtensor);
m.def("is_functionaltensor", &is_functionaltensor);
m.def("get_unwrapped", &get_unwrapped);
m.def("maybe_get_level", &maybe_get_level);
m.def("maybe_get_bdim", &maybe_get_bdim);
m.def("maybe_current_level", &maybe_current_level);
m.def("current_level", &currentLevel);
m.def("tls_set_vmap_excluded", &tls_set_vmap_excluded);
m.def("_set_dynamic_layer_keys_included", &_set_dynamic_layer_keys_included);
m.def("dump_dls", &dump_dls);
m.def("dump_local_tls", &dump_local_tls);
m.def("is_functorch_wrapped_tensor", [](const Tensor& tensor) {
return maybe_get_level(tensor) != -1;
});
m.def(
"get_interpreter_stack", []() -> std::optional<std::vector<Interpreter>> {
const auto& stack = getDynamicLayerStack();
if (stack.empty()) {
return c10::nullopt;
}
std::vector<Interpreter> result;
result.reserve(stack.size());
for (auto i : stack) {
result.push_back(i.interpreter());
}
return result;
});
m.def("peek_interpreter_stack", []() -> std::optional<Interpreter> {
const auto& stack = getDynamicLayerStack();
if (stack.empty()) {
return c10::nullopt;
}
auto result = stack.back().interpreter();
return result;
});
m.def("get_dynamic_layer_stack_depth", []() -> size_t {
return getDynamicLayerStack().size();
});
m.def(
"pop_dynamic_layer_stack_and_undo_to_depth",
&popDynamicLayerStackToDepth);
m.def("pop_dynamic_layer_stack", &popDynamicLayer);
m.def("push_dynamic_layer_stack", [](DynamicLayer layer) -> int64_t {
return pushDynamicLayer(std::move(layer));
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<DynamicLayer>(m, "DynamicLayer");
py::enum_<TransformType>(m, "TransformType")
.value("Torch", TransformType::Torch)
.value("Grad", TransformType::Grad)
.value("Jvp", TransformType::Jvp)
.value("Functionalize", TransformType::Functionalize)
.value("Vmap", TransformType::Vmap);
py::enum_<RandomnessType>(m, "RandomnessType")
.value("Error", RandomnessType::Error)
.value("Same", RandomnessType::Same)
.value("Different", RandomnessType::Different);
py::class_<Interpreter>(m, "CInterpreter")
.def("key", &Interpreter::key)
.def("level", &Interpreter::level);
py::class_<GradInterpreterPtr>(m, "CGradInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &GradInterpreterPtr::key)
.def("level", &GradInterpreterPtr::level)
.def("lift", &GradInterpreterPtr::lift)
.def("prevGradMode", &GradInterpreterPtr::prevGradMode);
py::class_<JvpInterpreterPtr>(m, "CJvpInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &JvpInterpreterPtr::key)
.def("level", &JvpInterpreterPtr::level)
.def("lift", &JvpInterpreterPtr::lift)
.def("prevFwdGradMode", &JvpInterpreterPtr::prevFwdGradMode);
py::class_<VmapInterpreterPtr>(m, "CVmapInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &VmapInterpreterPtr::key)
.def("level", &VmapInterpreterPtr::level)
.def("batchSize", &VmapInterpreterPtr::batchSize)
.def("randomness", &VmapInterpreterPtr::randomness);
py::class_<FunctionalizeInterpreterPtr>(m, "CFunctionalizeInterpreterPtr")
.def(py::init<const Interpreter*>())
.def("key", &FunctionalizeInterpreterPtr::key)
.def("level", &FunctionalizeInterpreterPtr::level)
.def(
"functionalizeAddBackViews",
&FunctionalizeInterpreterPtr::functionalizeAddBackViews);
}
} // namespace torch::functorch::impl