| from typing import Any, Dict, List, Optional |
| |
| import torch |
| from torch import Tensor |
| |
| from .optimizer import ( |
| _capturable_doc, |
| _default_to_fused_or_foreach, |
| _differentiable_doc, |
| _disable_dynamo_if_unsupported, |
| _foreach_doc, |
| _get_capturable_supported_devices, |
| _get_scalar_dtype, |
| _maximize_doc, |
| _use_grad_for_differentiable, |
| _view_as_real, |
| Optimizer, |
| ParamsT, |
| ) |
| |
| __all__ = ["Adadelta", "adadelta"] |
| |
| |
| class Adadelta(Optimizer): |
| def __init__( |
| self, |
| params: ParamsT, |
| lr: float = 1.0, |
| rho: float = 0.9, |
| eps: float = 1e-6, |
| weight_decay: float = 0, |
| foreach: Optional[bool] = None, |
| *, |
| capturable: bool = False, |
| maximize: bool = False, |
| differentiable: bool = False, |
| ): |
| if not 0.0 <= lr: |
| raise ValueError(f"Invalid learning rate: {lr}") |
| if not 0.0 <= rho <= 1.0: |
| raise ValueError(f"Invalid rho value: {rho}") |
| if not 0.0 <= eps: |
| raise ValueError(f"Invalid epsilon value: {eps}") |
| if not 0.0 <= weight_decay: |
| raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
| |
| defaults = dict( |
| lr=lr, |
| rho=rho, |
| eps=eps, |
| weight_decay=weight_decay, |
| maximize=maximize, |
| capturable=capturable, |
| foreach=foreach, |
| differentiable=differentiable, |
| ) |
| super().__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault("foreach", None) |
| group.setdefault("maximize", False) |
| group.setdefault("differentiable", False) |
| group.setdefault("capturable", False) |
| for p in group["params"]: |
| p_state = self.state.get(p, []) |
| if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
| step_val = float(p_state["step"]) |
| p_state["step"] = ( |
| torch.tensor( |
| step_val, dtype=_get_scalar_dtype(), device=p.device |
| ) |
| if group["capturable"] |
| else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
| ) |
| |
| def _init_group( |
| self, |
| group: Dict[str, Any], |
| params_with_grad: List[Tensor], |
| grads: List[Tensor], |
| square_avgs: List[Tensor], |
| acc_deltas: List[Tensor], |
| state_steps: List[Tensor], |
| ): |
| has_complex = False |
| p: Tensor |
| for p in group["params"]: |
| if p.grad is None: |
| continue |
| has_complex |= torch.is_complex(p) |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError("Adadelta does not support sparse gradients") |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| |
| # Lazy state initialization |
| if len(state) == 0: |
| state["step"] = ( |
| torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) |
| if group["capturable"] |
| else torch.zeros((), dtype=_get_scalar_dtype()) |
| ) |
| |
| state["square_avg"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| state["acc_delta"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| |
| square_avgs.append(state["square_avg"]) |
| acc_deltas.append(state["acc_delta"]) |
| state_steps.append(state["step"]) |
| |
| return has_complex |
| |
| @_use_grad_for_differentiable |
| def step(self, closure=None): |
| """Perform a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| self._cuda_graph_capture_health_check() |
| |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad: List[Tensor] = [] |
| grads: List[Tensor] = [] |
| square_avgs: List[Tensor] = [] |
| acc_deltas: List[Tensor] = [] |
| state_steps: List[Tensor] = [] |
| ( |
| lr, |
| rho, |
| eps, |
| weight_decay, |
| foreach, |
| maximize, |
| differentiable, |
| capturable, |
| ) = ( |
| group["lr"], |
| group["rho"], |
| group["eps"], |
| group["weight_decay"], |
| group["foreach"], |
| group["maximize"], |
| group["differentiable"], |
| group["capturable"], |
| ) |
| |
| has_complex = self._init_group( |
| group, params_with_grad, grads, square_avgs, acc_deltas, state_steps |
| ) |
| |
| adadelta( |
| params_with_grad, |
| grads, |
| square_avgs, |
| acc_deltas, |
| state_steps, |
| lr=lr, |
| rho=rho, |
| eps=eps, |
| weight_decay=weight_decay, |
| foreach=foreach, |
| maximize=maximize, |
| differentiable=differentiable, |
| capturable=capturable, |
| has_complex=has_complex, |
| ) |
| |
| return loss |
| |
| |
| Adadelta.__doc__ = ( |
| r"""Implements Adadelta algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, |
| \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)}, |
| \: \lambda \text{ (weight decay)} \\ |
| &\textbf{initialize} : v_0 \leftarrow 0 \: \text{ (square avg)}, |
| \: u_0 \leftarrow 0 \: \text{ (accumulate variables)} \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm}if \: \lambda \neq 0 \\ |
| &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
| &\hspace{5mm} v_t \leftarrow v_{t-1} \rho + g^2_t (1 - \rho) \\ |
| &\hspace{5mm}\Delta x_t \leftarrow \frac{\sqrt{u_{t-1} + |
| \epsilon }}{ \sqrt{v_t + \epsilon} }g_t \hspace{21mm} \\ |
| &\hspace{5mm} u_t \leftarrow u_{t-1} \rho + |
| \Delta x^2_t (1 - \rho) \\ |
| &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \Delta x_t \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_. |
| """ |
| + rf""" |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| rho (float, optional): coefficient used for computing a running average |
| of squared gradients (default: 0.9). A higher value of `rho` will |
| result in a slower average, which can be helpful for preventing |
| oscillations in the learning process. |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-6). |
| lr (float, optional): coefficient that scale delta before it is applied |
| to the parameters (default: 1.0) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| {_foreach_doc} |
| {_capturable_doc} |
| {_maximize_doc} |
| {_differentiable_doc} |
| |
| .. _ADADELTA\: An Adaptive Learning Rate Method: |
| https://arxiv.org/abs/1212.5701 |
| |
| """ |
| ) |
| |
| |
| def _single_tensor_adadelta( |
| params: List[Tensor], |
| grads: List[Tensor], |
| square_avgs: List[Tensor], |
| acc_deltas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lr: float, |
| rho: float, |
| eps: float, |
| weight_decay: float, |
| maximize: bool, |
| differentiable: bool, |
| capturable: bool, |
| has_complex: bool, |
| ): |
| # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] |
| if not torch.compiler.is_compiling() and capturable: |
| capturable_supported_devices = _get_capturable_supported_devices( |
| supports_xla=False |
| ) |
| assert all( |
| p.device.type == step.device.type |
| and p.device.type in capturable_supported_devices |
| for p, step in zip(params, state_steps) |
| ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
| |
| for param, grad, square_avg, acc_delta, step in zip( |
| params, grads, square_avgs, acc_deltas, state_steps |
| ): |
| step += 1 |
| grad = grad if not maximize else -grad |
| |
| if weight_decay != 0: |
| grad = grad.add(param, alpha=weight_decay) |
| |
| if torch.is_complex(param): |
| square_avg = torch.view_as_real(square_avg) |
| acc_delta = torch.view_as_real(acc_delta) |
| grad = torch.view_as_real(grad) |
| |
| square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) |
| std = square_avg.add(eps).sqrt_() |
| delta = acc_delta.add(eps).sqrt_() |
| if differentiable: |
| delta = delta.clone() |
| delta.div_(std).mul_(grad) |
| acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho) |
| |
| if torch.is_complex(param): |
| delta = torch.view_as_complex(delta) |
| param.add_(delta, alpha=-lr) |
| |
| |
| def _multi_tensor_adadelta( |
| params: List[Tensor], |
| grads: List[Tensor], |
| square_avgs: List[Tensor], |
| acc_deltas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lr: float, |
| rho: float, |
| eps: float, |
| weight_decay: float, |
| maximize: bool, |
| differentiable: bool, |
| capturable: bool, |
| has_complex: bool, |
| ): |
| assert not differentiable, "_foreach ops don't support autograd" |
| |
| # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] |
| if not torch.compiler.is_compiling() and capturable: |
| capturable_supported_devices = _get_capturable_supported_devices( |
| supports_xla=False |
| ) |
| assert all( |
| p.device.type == step.device.type |
| and p.device.type in capturable_supported_devices |
| for p, step in zip(params, state_steps) |
| ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
| |
| if len(params) == 0: |
| return |
| |
| grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
| [params, grads, square_avgs, acc_deltas, state_steps] |
| ) |
| for ( |
| device_params, |
| device_grads, |
| device_square_avgs, |
| device_acc_deltas, |
| device_state_steps, |
| ), _ in grouped_tensors.values(): |
| if has_complex: |
| _view_as_real( |
| device_params, device_grads, device_square_avgs, device_acc_deltas |
| ) |
| |
| # Update steps |
| # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over |
| # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just |
| # wrapped it once now. The alpha is required to assure we go to the right overload. |
| if device_state_steps[0].is_cpu: |
| torch._foreach_add_( |
| device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
| ) |
| else: |
| torch._foreach_add_(device_state_steps, 1) |
| |
| if maximize: |
| device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] |
| |
| if weight_decay != 0: |
| # Re-use the intermediate memory (device_grads) already allocated for maximize |
| if maximize: |
| torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
| else: |
| device_grads = torch._foreach_add( # type: ignore[assignment] |
| device_grads, device_params, alpha=weight_decay |
| ) |
| |
| torch._foreach_mul_(device_square_avgs, rho) |
| torch._foreach_addcmul_( |
| device_square_avgs, device_grads, device_grads, value=1 - rho |
| ) |
| |
| std = torch._foreach_add(device_square_avgs, eps) |
| torch._foreach_sqrt_(std) |
| |
| deltas = torch._foreach_add(device_acc_deltas, eps) |
| torch._foreach_sqrt_(deltas) |
| torch._foreach_div_(deltas, std) |
| torch._foreach_mul_(deltas, device_grads) |
| |
| torch._foreach_mul_(device_acc_deltas, rho) |
| torch._foreach_addcmul_(device_acc_deltas, deltas, deltas, value=1 - rho) |
| |
| # If LR is a tensor, the else branch will internally call item() |
| # which will cause silent incorrectness if we are capturing |
| if capturable and isinstance(lr, torch.Tensor): |
| torch._foreach_mul_(deltas, -lr) |
| torch._foreach_add_(device_params, deltas) |
| else: |
| torch._foreach_add_(device_params, deltas, alpha=-lr) |
| |
| |
| @_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adadelta) |
| def adadelta( |
| params: List[Tensor], |
| grads: List[Tensor], |
| square_avgs: List[Tensor], |
| acc_deltas: List[Tensor], |
| state_steps: List[Tensor], |
| # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 |
| # setting this as kwarg for now as functional API is compiled by torch/distributed/optim |
| capturable: bool = False, |
| foreach: Optional[bool] = None, |
| differentiable: bool = False, |
| has_complex: bool = False, |
| *, |
| lr: float, |
| rho: float, |
| eps: float, |
| weight_decay: float, |
| maximize: bool, |
| ): |
| r"""Functional API that performs Adadelta algorithm computation. |
| |
| See :class:`~torch.optim.Adadelta` for details. |
| """ |
| |
| # this check is slow during compilation, so we skip it |
| # if it's strictly needed we can add this check back in dynamo |
| if not torch.compiler.is_compiling() and not all( |
| isinstance(t, torch.Tensor) for t in state_steps |
| ): |
| raise RuntimeError( |
| "API has changed, `state_steps` argument must contain a list of singleton tensors" |
| ) |
| |
| # We still respect when the user inputs False for foreach. |
| if foreach is None: |
| _, foreach = _default_to_fused_or_foreach( |
| params, differentiable, use_fused=False |
| ) |
| |
| if foreach and torch.jit.is_scripting(): |
| raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
| |
| if foreach and not torch.jit.is_scripting(): |
| func = _multi_tensor_adadelta |
| else: |
| func = _single_tensor_adadelta |
| |
| func( |
| params, |
| grads, |
| square_avgs, |
| acc_deltas, |
| state_steps, |
| lr=lr, |
| rho=rho, |
| eps=eps, |
| weight_decay=weight_decay, |
| maximize=maximize, |
| differentiable=differentiable, |
| capturable=capturable, |
| has_complex=has_complex, |
| ) |