| from typing import List, Optional |
| |
| import torch |
| from torch import Tensor |
| from torch.utils._foreach_utils import _get_fused_kernels_supported_devices |
| from .optimizer import ( |
| _default_to_fused_or_foreach, |
| _differentiable_doc, |
| _foreach_doc, |
| _get_scalar_dtype, |
| _get_value, |
| _maximize_doc, |
| _use_grad_for_differentiable, |
| _view_as_real, |
| Optimizer, |
| ParamsT, |
| ) |
| |
| __all__ = ["Adagrad", "adagrad"] |
| |
| |
| class Adagrad(Optimizer): |
| def __init__( |
| self, |
| params: ParamsT, |
| lr: float = 1e-2, |
| lr_decay: float = 0, |
| weight_decay: float = 0, |
| initial_accumulator_value: float = 0, |
| eps: float = 1e-10, |
| foreach: Optional[bool] = None, |
| *, |
| maximize: bool = False, |
| differentiable: bool = False, |
| fused: Optional[bool] = None, |
| ): |
| if not 0.0 <= lr: |
| raise ValueError(f"Invalid learning rate: {lr}") |
| if not 0.0 <= lr_decay: |
| raise ValueError(f"Invalid lr_decay value: {lr_decay}") |
| if not 0.0 <= weight_decay: |
| raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
| if not 0.0 <= initial_accumulator_value: |
| raise ValueError( |
| f"Invalid initial_accumulator_value value: {initial_accumulator_value}" |
| ) |
| if not 0.0 <= eps: |
| raise ValueError(f"Invalid epsilon value: {eps}") |
| |
| defaults = dict( |
| lr=lr, |
| lr_decay=lr_decay, |
| eps=eps, |
| weight_decay=weight_decay, |
| initial_accumulator_value=initial_accumulator_value, |
| foreach=foreach, |
| maximize=maximize, |
| differentiable=differentiable, |
| fused=fused, |
| ) |
| super().__init__(params, defaults) |
| |
| if fused: |
| if differentiable: |
| raise RuntimeError("`fused` does not support `differentiable`") |
| self._step_supports_amp_scaling = True |
| fused_supported_devices = _get_fused_kernels_supported_devices() |
| # Not support CUDA yet |
| fused_supported_devices.remove("cuda") |
| if not all( |
| p.device.type in fused_supported_devices and torch.is_floating_point(p) |
| for pg in self.param_groups |
| for p in pg["params"] |
| ): |
| raise RuntimeError( |
| "`fused=True` requires all the params to be floating point Tensors of " |
| f"supported devices: {fused_supported_devices}." |
| ) |
| if foreach: |
| raise RuntimeError("`fused` and `foreach` cannot be `True` together.") |
| |
| for group in self.param_groups: |
| for p in group["params"]: |
| state = self.state[p] |
| state["step"] = ( |
| torch.zeros( |
| (), |
| dtype=_get_scalar_dtype(is_fused=group["fused"]), |
| device=p.device, |
| ) |
| if group["fused"] |
| else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
| ) |
| init_value = ( |
| complex(initial_accumulator_value, initial_accumulator_value) |
| if torch.is_complex(p) |
| else initial_accumulator_value |
| ) |
| state["sum"] = torch.full_like( |
| p, init_value, memory_format=torch.preserve_format |
| ) |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| # define "fused" for |
| # MYPY error: Name "fused" may be undefined |
| fused = None |
| for group in self.param_groups: |
| group.setdefault("foreach", None) |
| group.setdefault("maximize", False) |
| group.setdefault("differentiable", False) |
| fused = group.setdefault("fused", None) |
| |
| state_values = list(self.state.values()) |
| step_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
| state_values[0]["step"] |
| ) |
| if not step_is_tensor: |
| for s in state_values: |
| s["step"] = torch.tensor( |
| float(s["step"]), dtype=_get_scalar_dtype(is_fused=fused) |
| ) |
| |
| def share_memory(self): |
| for group in self.param_groups: |
| for p in group["params"]: |
| state = self.state[p] |
| state["sum"].share_memory_() |
| |
| def _init_group(self, group, params_with_grad, grads, state_sums, state_steps): |
| has_sparse_grad, has_complex = False, False |
| for p in group["params"]: |
| if p.grad is not None: |
| has_sparse_grad |= p.grad.is_sparse |
| has_complex |= torch.is_complex(p) |
| params_with_grad.append(p) |
| grads.append(p.grad) |
| state = self.state[p] |
| state_sums.append(state["sum"]) |
| state_steps.append(state["step"]) |
| |
| return has_sparse_grad, has_complex |
| |
| @_use_grad_for_differentiable |
| def step(self, closure=None): |
| """Perform a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad: List[Tensor] = [] |
| grads: List[Tensor] = [] |
| state_sums: List[Tensor] = [] |
| state_steps: List[Tensor] = [] |
| |
| has_sparse_grad, has_complex = self._init_group( |
| group, params_with_grad, grads, state_sums, state_steps |
| ) |
| |
| adagrad( |
| params_with_grad, |
| grads, |
| state_sums, |
| state_steps, |
| lr=group["lr"], |
| weight_decay=group["weight_decay"], |
| lr_decay=group["lr_decay"], |
| eps=group["eps"], |
| has_sparse_grad=has_sparse_grad, |
| foreach=group["foreach"], |
| maximize=group["maximize"], |
| differentiable=group["differentiable"], |
| has_complex=has_complex, |
| fused=group["fused"], |
| grad_scale=getattr(self, "grad_scale", None), |
| found_inf=getattr(self, "found_inf", None), |
| ) |
| |
| return loss |
| |
| |
| Adagrad.__doc__ = ( |
| r"""Implements Adagrad algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) |
| \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ |
| &\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\ |
| &\textbf{initialize} : state\_sum_0 \leftarrow \tau \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\ |
| &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
| &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
| &\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\ |
| &\hspace{5mm}\theta_t \leftarrow |
| \theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning |
| and Stochastic Optimization`_. |
| """ |
| + rf""" |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| lr_decay (float, optional): learning rate decay (default: 0) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| initial_accumulator_value (float, optional): initial value of the |
| sum of squares of gradients (default: 0) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-10) |
| {_foreach_doc} |
| {_maximize_doc} |
| {_differentiable_doc} |
| fused (bool, optional): whether the fused implementation (CPU only) is used. |
| Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16` |
| are supported. (default: None). Please note that the fused implementations does not |
| support sparse or complex gradients. |
| .. _Adaptive Subgradient Methods for Online Learning and Stochastic |
| Optimization: http://jmlr.org/papers/v12/duchi11a.html |
| |
| """ |
| ) |
| |
| |
| def adagrad( |
| params: List[Tensor], |
| grads: List[Tensor], |
| state_sums: List[Tensor], |
| state_steps: List[Tensor], |
| fused: Optional[bool] = None, |
| grad_scale: Optional[Tensor] = None, |
| found_inf: Optional[Tensor] = None, |
| # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 |
| # setting these as kwargs for now as functional API is compiled by torch/distributed/optim |
| has_sparse_grad: bool = False, |
| foreach: Optional[bool] = None, |
| differentiable: bool = False, |
| has_complex: bool = False, |
| *, |
| lr: float, |
| weight_decay: float, |
| lr_decay: float, |
| eps: float, |
| maximize: bool, |
| ): |
| r"""Functional API that performs Adagrad algorithm computation. |
| |
| See :class:`~torch.optim.Adagrad` for details. |
| """ |
| if not all(isinstance(t, torch.Tensor) for t in state_steps): |
| raise RuntimeError( |
| "API has changed, `state_steps` argument must contain a list of singleton tensors" |
| ) |
| |
| # Respect when the user inputs False/True for foreach or fused. We only want to change |
| # the default when neither have been user-specified. Note that we default to foreach |
| # and pass False to use_fused. This is not a mistake--we want to give the fused impl |
| # bake-in time before making it the default, even if it is typically faster. |
| if fused is None and foreach is None: |
| _, foreach = _default_to_fused_or_foreach( |
| params, differentiable, use_fused=False |
| ) |
| |
| if fused is None: |
| fused = False |
| if foreach is None: |
| foreach = False |
| |
| if foreach and torch.jit.is_scripting(): |
| raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
| if fused and torch.jit.is_scripting(): |
| raise RuntimeError("torch.jit.script not supported with fused optimizers") |
| |
| if fused and not torch.jit.is_scripting(): |
| func = _fused_adagrad |
| elif foreach and not torch.jit.is_scripting(): |
| func = _multi_tensor_adagrad |
| else: |
| func = _single_tensor_adagrad |
| |
| func( |
| params, |
| grads, |
| state_sums, |
| state_steps, |
| lr=lr, |
| weight_decay=weight_decay, |
| lr_decay=lr_decay, |
| eps=eps, |
| has_sparse_grad=has_sparse_grad, |
| maximize=maximize, |
| differentiable=differentiable, |
| has_complex=has_complex, |
| grad_scale=grad_scale, |
| found_inf=found_inf, |
| ) |
| |
| |
| def _make_sparse(grad, grad_indices, values): |
| size = grad.size() |
| return torch.sparse_coo_tensor(grad_indices, values, size) |
| |
| |
| def _single_tensor_adagrad( |
| params: List[Tensor], |
| grads: List[Tensor], |
| state_sums: List[Tensor], |
| state_steps: List[Tensor], |
| grad_scale: Optional[Tensor], |
| found_inf: Optional[Tensor], |
| *, |
| lr: float, |
| weight_decay: float, |
| lr_decay: float, |
| eps: float, |
| has_sparse_grad: bool, |
| maximize: bool, |
| differentiable: bool, |
| has_complex: bool, |
| ): |
| assert grad_scale is None and found_inf is None |
| for param, grad, state_sum, step_t in zip(params, grads, state_sums, state_steps): |
| # update step |
| step_t += 1 |
| step = _get_value(step_t) |
| grad = grad if not maximize else -grad |
| |
| if weight_decay != 0: |
| if grad.is_sparse: |
| raise RuntimeError( |
| "weight_decay option is not compatible with sparse gradients" |
| ) |
| grad = grad.add(param, alpha=weight_decay) |
| |
| clr = lr / (1 + (step - 1) * lr_decay) |
| |
| if grad.is_sparse: |
| grad = grad.coalesce() # the update is non-linear so indices must be unique |
| grad_indices = grad._indices() |
| grad_values = grad._values() |
| |
| state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) |
| std = state_sum.sparse_mask(grad) |
| std_values = std._values().sqrt_().add_(eps) |
| param.add_( |
| _make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr |
| ) |
| else: |
| is_complex = torch.is_complex(param) |
| if is_complex: |
| grad = torch.view_as_real(grad) |
| state_sum = torch.view_as_real(state_sum) |
| param = torch.view_as_real(param) |
| state_sum.addcmul_(grad, grad, value=1) |
| if differentiable: |
| std = state_sum.sqrt() + eps |
| else: |
| std = state_sum.sqrt().add_(eps) |
| param.addcdiv_(grad, std, value=-clr) |
| if is_complex: |
| param = torch.view_as_complex(param) |
| state_sum = torch.view_as_complex(state_sum) |
| |
| |
| def _multi_tensor_adagrad( |
| params: List[Tensor], |
| grads: List[Tensor], |
| state_sums: List[Tensor], |
| state_steps: List[Tensor], |
| grad_scale: Optional[Tensor], |
| found_inf: Optional[Tensor], |
| *, |
| lr: float, |
| weight_decay: float, |
| lr_decay: float, |
| eps: float, |
| has_sparse_grad: bool, |
| maximize: bool, |
| differentiable: bool, |
| has_complex: bool, |
| ): |
| assert not differentiable, "_foreach ops don't support autograd" |
| assert grad_scale is None and found_inf is None |
| |
| # Foreach functions will throw errors if given empty lists |
| if len(params) == 0: |
| return |
| |
| grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype( |
| [params, grads, state_sums, state_steps] |
| ) |
| for ( |
| device_params, |
| device_grads, |
| device_state_sums, |
| device_state_steps, |
| ), _ in grouped_tensorlists.values(): |
| device_has_sparse_grad = has_sparse_grad and any( |
| grad.is_sparse for grad in device_grads |
| ) |
| |
| if device_has_sparse_grad: |
| _single_tensor_adagrad( |
| device_params, |
| device_grads, |
| device_state_sums, |
| device_state_steps, |
| lr=lr, |
| weight_decay=weight_decay, |
| lr_decay=lr_decay, |
| eps=eps, |
| has_sparse_grad=True, |
| maximize=maximize, |
| differentiable=differentiable, |
| has_complex=has_complex, |
| grad_scale=grad_scale, |
| found_inf=found_inf, |
| ) |
| continue |
| |
| # Handle complex parameters |
| if has_complex: |
| _view_as_real(device_params, device_grads, device_state_sums) |
| |
| if maximize: |
| device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] |
| |
| # Update steps |
| # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over |
| # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just |
| # wrapped it once now. The alpha is required to assure we go to the right overload. |
| if device_state_steps[0].is_cpu: |
| torch._foreach_add_( |
| device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
| ) |
| else: |
| torch._foreach_add_(device_state_steps, 1) |
| |
| if weight_decay != 0: |
| # Re-use the intermediate memory (device_grads) already allocated for maximize |
| if maximize: |
| torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
| else: |
| device_grads = torch._foreach_add( # type: ignore[assignment] |
| device_grads, device_params, alpha=weight_decay |
| ) |
| |
| minus_clr = [ |
| -lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps |
| ] |
| |
| torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1) |
| |
| std = torch._foreach_sqrt(device_state_sums) |
| torch._foreach_add_(std, eps) |
| |
| if weight_decay != 0 or maximize: |
| # Again, re-use the intermediate memory (device_grads) already allocated |
| torch._foreach_mul_(device_grads, minus_clr) |
| numerator = device_grads |
| else: |
| numerator = torch._foreach_mul(device_grads, minus_clr) # type: ignore[assignment] |
| |
| torch._foreach_addcdiv_(device_params, numerator, std) |
| |
| |
| def _fused_adagrad( |
| params: List[Tensor], |
| grads: List[Tensor], |
| state_sums: List[Tensor], |
| state_steps: List[Tensor], |
| grad_scale: Optional[Tensor], |
| found_inf: Optional[Tensor], |
| *, |
| lr: float, |
| weight_decay: float, |
| lr_decay: float, |
| eps: float, |
| has_sparse_grad: bool, |
| maximize: bool, |
| differentiable: bool, |
| has_complex: bool, |
| ) -> None: |
| if not params: |
| return |
| if has_sparse_grad or has_complex: |
| raise RuntimeError("`fused` does not support sparse grad or complex param") |
| |
| if differentiable: |
| raise RuntimeError( |
| "adagrad with fused=True does not support differentiable=True" |
| ) |
| |
| grad_scale_dict = ( |
| {grad_scale.device: grad_scale} if grad_scale is not None else None |
| ) |
| found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None |
| |
| grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
| [params, grads, state_sums, state_steps] |
| ) |
| for (device, _), ( |
| ( |
| device_params, |
| device_grads, |
| device_state_sums, |
| device_state_steps, |
| ), |
| _, |
| ) in grouped_tensors.items(): |
| device_grad_scale, device_found_inf = None, None |
| if grad_scale is not None and grad_scale_dict is not None: |
| if device not in grad_scale_dict: |
| grad_scale_dict[device] = grad_scale.to(device, non_blocking=True) # type: ignore[index] |
| device_grad_scale = grad_scale_dict[device] # type: ignore[index] |
| if found_inf is not None and found_inf_dict is not None: |
| if found_inf not in found_inf_dict: |
| found_inf_dict[device] = found_inf.to(device, non_blocking=True) # type: ignore[index] |
| device_found_inf = found_inf_dict[device] # type: ignore[index] |
| torch._foreach_add_(device_state_steps, 1) |
| torch._fused_adagrad_( |
| device_params, |
| device_grads, |
| device_state_sums, |
| device_state_steps, |
| lr=lr, |
| lr_decay=lr_decay, |
| weight_decay=weight_decay, |
| eps=eps, |
| maximize=maximize, |
| grad_scale=device_grad_scale, |
| found_inf=device_found_inf, |
| ) |
| if device_found_inf is not None: |
| torch._foreach_sub_( |
| device_state_steps, [device_found_inf] * len(device_state_steps) |
| ) |