| import warnings |
| from typing import Optional, Tuple |
| |
| import torch |
| from torch import Tensor |
| from .linear import NonDynamicallyQuantizableLinear |
| from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ |
| from torch.nn.parameter import Parameter |
| from .module import Module |
| from .. import functional as F |
| |
| __all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh', |
| 'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU', |
| 'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink', |
| 'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax'] |
| |
| |
| class Threshold(Module): |
| r"""Thresholds each element of the input Tensor. |
| |
| Threshold is defined as: |
| |
| .. math:: |
| y = |
| \begin{cases} |
| x, &\text{ if } x > \text{threshold} \\ |
| \text{value}, &\text{ otherwise } |
| \end{cases} |
| |
| Args: |
| threshold: The value to threshold at |
| value: The value to replace with |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| Examples:: |
| |
| >>> m = nn.Threshold(0.1, 20) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['threshold', 'value', 'inplace'] |
| |
| threshold: float |
| value: float |
| inplace: bool |
| |
| def __init__(self, threshold: float, value: float, inplace: bool = False) -> None: |
| super().__init__() |
| self.threshold = threshold |
| self.value = value |
| self.inplace = inplace |
| # TODO: check in THNN (if inplace == True, then assert value <= threshold) |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.threshold(input, self.threshold, self.value, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'threshold={}, value={}{}'.format( |
| self.threshold, self.value, inplace_str |
| ) |
| |
| |
| class ReLU(Module): |
| r"""Applies the rectified linear unit function element-wise: |
| |
| :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)` |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/ReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| |
| An implementation of CReLU - https://arxiv.org/abs/1603.05201 |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2).unsqueeze(0) |
| >>> output = torch.cat((m(input), m(-input))) |
| """ |
| __constants__ = ['inplace'] |
| inplace: bool |
| |
| def __init__(self, inplace: bool = False): |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.relu(input, inplace=self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class RReLU(Module): |
| r"""Applies the randomized leaky rectified liner unit function, element-wise, |
| as described in the paper: |
| |
| `Empirical Evaluation of Rectified Activations in Convolutional Network`_. |
| |
| The function is defined as: |
| |
| .. math:: |
| \text{RReLU}(x) = |
| \begin{cases} |
| x & \text{if } x \geq 0 \\ |
| ax & \text{ otherwise } |
| \end{cases} |
| |
| where :math:`a` is randomly sampled from uniform distribution |
| :math:`\mathcal{U}(\text{lower}, \text{upper})`. |
| |
| See: https://arxiv.org/pdf/1505.00853.pdf |
| |
| Args: |
| lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` |
| upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/RReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.RReLU(0.1, 0.3) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: |
| https://arxiv.org/abs/1505.00853 |
| """ |
| __constants__ = ['lower', 'upper', 'inplace'] |
| |
| lower: float |
| upper: float |
| inplace: bool |
| |
| def __init__( |
| self, |
| lower: float = 1. / 8, |
| upper: float = 1. / 3, |
| inplace: bool = False |
| ): |
| super().__init__() |
| self.lower = lower |
| self.upper = upper |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str) |
| |
| |
| class Hardtanh(Module): |
| r"""Applies the HardTanh function element-wise. |
| |
| HardTanh is defined as: |
| |
| .. math:: |
| \text{HardTanh}(x) = \begin{cases} |
| \text{max\_val} & \text{ if } x > \text{ max\_val } \\ |
| \text{min\_val} & \text{ if } x < \text{ min\_val } \\ |
| x & \text{ otherwise } \\ |
| \end{cases} |
| |
| Args: |
| min_val: minimum value of the linear region range. Default: -1 |
| max_val: maximum value of the linear region range. Default: 1 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Keyword arguments :attr:`min_value` and :attr:`max_value` |
| have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Hardtanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardtanh(-2, 2) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['min_val', 'max_val', 'inplace'] |
| |
| min_val: float |
| max_val: float |
| inplace: bool |
| |
| def __init__( |
| self, |
| min_val: float = -1., |
| max_val: float = 1., |
| inplace: bool = False, |
| min_value: Optional[float] = None, |
| max_value: Optional[float] = None |
| ) -> None: |
| super().__init__() |
| if min_value is not None: |
| warnings.warn("keyword argument min_value is deprecated and rename to min_val") |
| min_val = min_value |
| if max_value is not None: |
| warnings.warn("keyword argument max_value is deprecated and rename to max_val") |
| max_val = max_value |
| |
| self.min_val = min_val |
| self.max_val = max_val |
| self.inplace = inplace |
| assert self.max_val > self.min_val |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.hardtanh(input, self.min_val, self.max_val, self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'min_val={}, max_val={}{}'.format( |
| self.min_val, self.max_val, inplace_str |
| ) |
| |
| |
| class ReLU6(Hardtanh): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{ReLU6}(x) = \min(\max(0,x), 6) |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/ReLU6.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU6() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def __init__(self, inplace: bool = False): |
| super().__init__(0., 6., inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class Sigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} |
| |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Sigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.Sigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return torch.sigmoid(input) |
| |
| |
| class Hardsigmoid(Module): |
| r"""Applies the Hardsigmoid function element-wise. |
| |
| Hardsigmoid is defined as: |
| |
| .. math:: |
| \text{Hardsigmoid}(x) = \begin{cases} |
| 0 & \text{if~} x \le -3, \\ |
| 1 & \text{if~} x \ge +3, \\ |
| x / 6 + 1 / 2 & \text{otherwise} |
| \end{cases} |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Hardsigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardsigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace'] |
| |
| inplace: bool |
| |
| def __init__(self, inplace : bool = False) -> None: |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.hardsigmoid(input, self.inplace) |
| |
| |
| class Tanh(Module): |
| r"""Applies the Hyperbolic Tangent (Tanh) function element-wise. |
| |
| Tanh is defined as: |
| |
| .. math:: |
| \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Tanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanh() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return torch.tanh(input) |
| |
| class SiLU(Module): |
| r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise. |
| The SiLU function is also known as the swish function. |
| |
| .. math:: |
| \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} |
| |
| .. note:: |
| See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ |
| where the SiLU (Sigmoid Linear Unit) was originally coined, and see |
| `Sigmoid-Weighted Linear Units for Neural Network Function Approximation |
| in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: |
| a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ |
| where the SiLU was experimented with later. |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/SiLU.png |
| |
| Examples:: |
| |
| >>> m = nn.SiLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace'] |
| inplace: bool |
| |
| def __init__(self, inplace: bool = False): |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.silu(input, inplace=self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| class Mish(Module): |
| r"""Applies the Mish function, element-wise. |
| Mish: A Self Regularized Non-Monotonic Neural Activation Function. |
| |
| .. math:: |
| \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) |
| |
| .. note:: |
| See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Mish.png |
| |
| Examples:: |
| |
| >>> m = nn.Mish() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace'] |
| inplace: bool |
| |
| def __init__(self, inplace: bool = False): |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.mish(input, inplace=self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| class Hardswish(Module): |
| r"""Applies the Hardswish function, element-wise, as described in the paper: |
| `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_. |
| |
| Hardswish is defined as: |
| |
| .. math:: |
| \text{Hardswish}(x) = \begin{cases} |
| 0 & \text{if~} x \le -3, \\ |
| x & \text{if~} x \ge +3, \\ |
| x \cdot (x + 3) /6 & \text{otherwise} |
| \end{cases} |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Hardswish.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardswish() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace'] |
| |
| inplace: bool |
| |
| def __init__(self, inplace : bool = False) -> None: |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.hardswish(input, self.inplace) |
| |
| |
| class ELU(Module): |
| r"""Applies the Exponential Linear Unit (ELU) function, element-wise, as described |
| in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear |
| Units (ELUs) <https://arxiv.org/abs/1511.07289>`__. |
| |
| ELU is defined as: |
| |
| .. math:: |
| \text{ELU}(x) = \begin{cases} |
| x, & \text{ if } x > 0\\ |
| \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 |
| \end{cases} |
| |
| Args: |
| alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/ELU.png |
| |
| Examples:: |
| |
| >>> m = nn.ELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| alpha: float |
| inplace: bool |
| |
| def __init__(self, alpha: float = 1., inplace: bool = False) -> None: |
| super().__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.elu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| class CELU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) |
| |
| More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . |
| |
| Args: |
| alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/CELU.png |
| |
| Examples:: |
| |
| >>> m = nn.CELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Continuously Differentiable Exponential Linear Units`: |
| https://arxiv.org/abs/1704.07483 |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| alpha: float |
| inplace: bool |
| |
| def __init__(self, alpha: float = 1., inplace: bool = False) -> None: |
| super().__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.celu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| class SELU(Module): |
| r"""Applied element-wise, as: |
| |
| .. math:: |
| \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) |
| |
| with :math:`\alpha = 1.6732632423543772848170429916717` and |
| :math:`\text{scale} = 1.0507009873554804934193349852946`. |
| |
| .. warning:: |
| When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation, |
| ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'`` |
| in order to get `Self-Normalizing Neural Networks`_. |
| See :func:`torch.nn.init.calculate_gain` for more information. |
| |
| More details can be found in the paper `Self-Normalizing Neural Networks`_ . |
| |
| Args: |
| inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/SELU.png |
| |
| Examples:: |
| |
| >>> m = nn.SELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 |
| """ |
| __constants__ = ['inplace'] |
| inplace: bool |
| |
| def __init__(self, inplace: bool = False) -> None: |
| super().__init__() |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.selu(input, self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class GLU(Module): |
| r"""Applies the gated linear unit function |
| :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half |
| of the input matrices and :math:`b` is the second half. |
| |
| Args: |
| dim (int): the dimension on which to split the input. Default: -1 |
| |
| Shape: |
| - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` |
| |
| Examples:: |
| |
| >>> m = nn.GLU() |
| >>> input = torch.randn(4, 2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| dim: int |
| |
| def __init__(self, dim: int = -1) -> None: |
| super().__init__() |
| self.dim = dim |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.glu(input, self.dim) |
| |
| def extra_repr(self) -> str: |
| return 'dim={}'.format(self.dim) |
| |
| |
| class GELU(Module): |
| r"""Applies the Gaussian Error Linear Units function: |
| |
| .. math:: \text{GELU}(x) = x * \Phi(x) |
| |
| where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. |
| |
| When the approximate argument is 'tanh', Gelu is estimated with: |
| |
| .. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3))) |
| |
| Args: |
| approximate (str, optional): the gelu approximation algorithm to use: |
| ``'none'`` | ``'tanh'``. Default: ``'none'`` |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/GELU.png |
| |
| Examples:: |
| |
| >>> m = nn.GELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['approximate'] |
| approximate: str |
| |
| def __init__(self, approximate: str = 'none') -> None: |
| super().__init__() |
| self.approximate = approximate |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.gelu(input, approximate=self.approximate) |
| |
| def extra_repr(self) -> str: |
| return 'approximate={}'.format(repr(self.approximate)) |
| |
| |
| class Hardshrink(Module): |
| r"""Applies the Hard Shrinkage (Hardshrink) function element-wise. |
| |
| Hardshrink is defined as: |
| |
| .. math:: |
| \text{HardShrink}(x) = |
| \begin{cases} |
| x, & \text{ if } x > \lambda \\ |
| x, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Hardshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| lambd: float |
| |
| def __init__(self, lambd: float = 0.5) -> None: |
| super().__init__() |
| self.lambd = lambd |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.hardshrink(input, self.lambd) |
| |
| def extra_repr(self) -> str: |
| return '{}'.format(self.lambd) |
| |
| |
| class LeakyReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) |
| |
| |
| or |
| |
| .. math:: |
| \text{LeakyReLU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| \text{negative\_slope} \times x, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| .. image:: ../scripts/activation_images/LeakyReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.LeakyReLU(0.1) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace', 'negative_slope'] |
| inplace: bool |
| negative_slope: float |
| |
| def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None: |
| super().__init__() |
| self.negative_slope = negative_slope |
| self.inplace = inplace |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.leaky_relu(input, self.negative_slope, self.inplace) |
| |
| def extra_repr(self) -> str: |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'negative_slope={}{}'.format(self.negative_slope, inplace_str) |
| |
| |
| class LogSigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/LogSigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.LogSigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.logsigmoid(input) |
| |
| |
| class Softplus(Module): |
| r"""Applies the Softplus function :math:`\text{Softplus}(x) = \frac{1}{\beta} * |
| \log(1 + \exp(\beta * x))` element-wise. |
| |
| SoftPlus is a smooth approximation to the ReLU function and can be used |
| to constrain the output of a machine to always be positive. |
| |
| For numerical stability the implementation reverts to the linear function |
| when :math:`input \times \beta > threshold`. |
| |
| Args: |
| beta: the :math:`\beta` value for the Softplus formulation. Default: 1 |
| threshold: values above this revert to a linear function. Default: 20 |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Softplus.png |
| |
| Examples:: |
| |
| >>> m = nn.Softplus() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['beta', 'threshold'] |
| beta: int |
| threshold: int |
| |
| def __init__(self, beta: int = 1, threshold: int = 20) -> None: |
| super().__init__() |
| self.beta = beta |
| self.threshold = threshold |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.softplus(input, self.beta, self.threshold) |
| |
| def extra_repr(self) -> str: |
| return 'beta={}, threshold={}'.format(self.beta, self.threshold) |
| |
| |
| class Softshrink(Module): |
| r"""Applies the soft shrinkage function elementwise: |
| |
| .. math:: |
| \text{SoftShrinkage}(x) = |
| \begin{cases} |
| x - \lambda, & \text{ if } x > \lambda \\ |
| x + \lambda, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Softshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Softshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| lambd: float |
| |
| def __init__(self, lambd: float = 0.5) -> None: |
| super().__init__() |
| self.lambd = lambd |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.softshrink(input, self.lambd) |
| |
| def extra_repr(self) -> str: |
| return str(self.lambd) |
| |
| |
| class MultiheadAttention(Module): |
| r"""Allows the model to jointly attend to information |
| from different representation subspaces as described in the paper: |
| `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. |
| |
| Multi-Head Attention is defined as: |
| |
| .. math:: |
| \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O |
| |
| where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. |
| |
| ``forward()`` will use the optimized implementation described in |
| `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following |
| conditions are met: |
| |
| - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This |
| restriction will be loosened in the future.) |
| - inputs are batched (3D) with ``batch_first==True`` |
| - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` |
| - training is disabled (using ``.eval()``) |
| - ``add_bias_kv`` is ``False`` |
| - ``add_zero_attn`` is ``False`` |
| - ``batch_first`` is ``True`` and the input is batched |
| - ``kdim`` and ``vdim`` are equal to ``embed_dim`` |
| - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask`` |
| nor ``attn_mask`` is passed |
| - autocast is disabled |
| |
| If the optimized implementation is in use, a |
| `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for |
| ``query``/``key``/``value`` to represent padding more efficiently than using a |
| padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ |
| will be returned, and an additional speedup proportional to the fraction of the input |
| that is padding can be expected. |
| |
| Args: |
| embed_dim: Total dimension of the model. |
| num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split |
| across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). |
| dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). |
| bias: If specified, adds bias to input / output projection layers. Default: ``True``. |
| add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. |
| add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. |
| Default: ``False``. |
| kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). |
| vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). |
| batch_first: If ``True``, then the input and output tensors are provided |
| as (batch, seq, feature). Default: ``False`` (seq, batch, feature). |
| |
| Examples:: |
| |
| >>> # xdoctest: +SKIP |
| >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) |
| >>> attn_output, attn_output_weights = multihead_attn(query, key, value) |
| |
| .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`: |
| https://arxiv.org/abs/2205.14135 |
| |
| """ |
| __constants__ = ['batch_first'] |
| bias_k: Optional[torch.Tensor] |
| bias_v: Optional[torch.Tensor] |
| |
| def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, |
| kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None: |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| super().__init__() |
| self.embed_dim = embed_dim |
| self.kdim = kdim if kdim is not None else embed_dim |
| self.vdim = vdim if vdim is not None else embed_dim |
| self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim |
| |
| self.num_heads = num_heads |
| self.dropout = dropout |
| self.batch_first = batch_first |
| self.head_dim = embed_dim // num_heads |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
| |
| if not self._qkv_same_embed_dim: |
| self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs)) |
| self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs)) |
| self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs)) |
| self.register_parameter('in_proj_weight', None) |
| else: |
| self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)) |
| self.register_parameter('q_proj_weight', None) |
| self.register_parameter('k_proj_weight', None) |
| self.register_parameter('v_proj_weight', None) |
| |
| if bias: |
| self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs)) |
| else: |
| self.register_parameter('in_proj_bias', None) |
| self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs) |
| |
| if add_bias_kv: |
| self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) |
| self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) |
| else: |
| self.bias_k = self.bias_v = None |
| |
| self.add_zero_attn = add_zero_attn |
| |
| self._reset_parameters() |
| |
| def _reset_parameters(self): |
| if self._qkv_same_embed_dim: |
| xavier_uniform_(self.in_proj_weight) |
| else: |
| xavier_uniform_(self.q_proj_weight) |
| xavier_uniform_(self.k_proj_weight) |
| xavier_uniform_(self.v_proj_weight) |
| |
| if self.in_proj_bias is not None: |
| constant_(self.in_proj_bias, 0.) |
| constant_(self.out_proj.bias, 0.) |
| if self.bias_k is not None: |
| xavier_normal_(self.bias_k) |
| if self.bias_v is not None: |
| xavier_normal_(self.bias_v) |
| |
| def __setstate__(self, state): |
| # Support loading old MultiheadAttention checkpoints generated by v1.1.0 |
| if '_qkv_same_embed_dim' not in state: |
| state['_qkv_same_embed_dim'] = True |
| |
| super().__setstate__(state) |
| |
| def forward( |
| self, |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| key_padding_mask: Optional[Tensor] = None, |
| need_weights: bool = True, |
| attn_mask: Optional[Tensor] = None, |
| average_attn_weights: bool = True, |
| is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]: |
| r""" |
| Args: |
| query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` |
| or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, |
| :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. |
| Queries are compared against key-value pairs to produce the output. |
| See "Attention Is All You Need" for more details. |
| key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` |
| or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, |
| :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. |
| See "Attention Is All You Need" for more details. |
| value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when |
| ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source |
| sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. |
| See "Attention Is All You Need" for more details. |
| key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` |
| to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. |
| Binary and float masks are supported. |
| For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for |
| the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value. |
| need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. |
| Default: ``True``. |
| attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape |
| :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, |
| :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be |
| broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. |
| Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the |
| corresponding position is not allowed to attend. For a float mask, the mask values will be added to |
| the attention weight. |
| If both attn_mask and key_padding_mask are supplied, their types should match. |
| is_causal: If specified, applies a causal mask as attention mask. Mutually exclusive with providing attn_mask. |
| Default: ``False``. |
| average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across |
| heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an |
| effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) |
| |
| Outputs: |
| - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, |
| :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, |
| where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the |
| embedding dimension ``embed_dim``. |
| - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, |
| returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or |
| :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and |
| :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per |
| head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. |
| |
| .. note:: |
| `batch_first` argument is ignored for unbatched inputs. |
| """ |
| if attn_mask is not None and is_causal: |
| raise AssertionError("Only allow causal mask or attn_mask") |
| |
| is_batched = query.dim() == 3 |
| |
| key_padding_mask = F._canonical_mask( |
| mask=key_padding_mask, |
| mask_name="key_padding_mask", |
| other_type=F._none_or_dtype(attn_mask), |
| other_name="attn_mask", |
| target_type=query.dtype |
| ) |
| |
| why_not_fast_path = '' |
| if not is_batched: |
| why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" |
| elif query is not key or key is not value: |
| # When lifting this restriction, don't forget to either |
| # enforce that the dtypes all match or test cases where |
| # they don't! |
| why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" |
| elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype: |
| why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" |
| elif self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype: |
| # this case will fail anyway, but at least they'll get a useful error message. |
| why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" |
| elif self.training: |
| why_not_fast_path = "training is enabled" |
| elif not self.batch_first: |
| why_not_fast_path = "batch_first was not True" |
| elif self.bias_k is not None: |
| why_not_fast_path = "self.bias_k was not None" |
| elif self.bias_v is not None: |
| why_not_fast_path = "self.bias_v was not None" |
| elif self.add_zero_attn: |
| why_not_fast_path = "add_zero_attn was enabled" |
| elif not self._qkv_same_embed_dim: |
| why_not_fast_path = "_qkv_same_embed_dim was not True" |
| elif query.is_nested and (key_padding_mask is not None or attn_mask is not None): |
| why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \ |
| is not supported with NestedTensor input" |
| elif torch.is_autocast_enabled(): |
| why_not_fast_path = "autocast is enabled" |
| |
| if not why_not_fast_path: |
| tensor_args = ( |
| query, |
| key, |
| value, |
| self.in_proj_weight, |
| self.in_proj_bias, |
| self.out_proj.weight, |
| self.out_proj.bias, |
| ) |
| # We have to use list comprehensions below because TorchScript does not support |
| # generator expressions. |
| if torch.overrides.has_torch_function(tensor_args): |
| why_not_fast_path = "some Tensor argument has_torch_function" |
| elif not all([(x is None or x.is_cuda or 'cpu' in str(x.device)) for x in tensor_args]): |
| why_not_fast_path = "some Tensor argument is neither CUDA nor CPU" |
| elif torch.is_grad_enabled() and any([x is not None and x.requires_grad for x in tensor_args]): |
| why_not_fast_path = ("grad is enabled and at least one of query or the " |
| "input/output projection weights or biases requires_grad") |
| if not why_not_fast_path: |
| merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query) |
| |
| return torch._native_multi_head_attention( |
| query, |
| key, |
| value, |
| self.embed_dim, |
| self.num_heads, |
| self.in_proj_weight, |
| self.in_proj_bias, |
| self.out_proj.weight, |
| self.out_proj.bias, |
| merged_mask, |
| need_weights, |
| average_attn_weights, |
| mask_type) |
| |
| any_nested = query.is_nested or key.is_nested or value.is_nested |
| assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " + |
| f"The fast path was not hit because {why_not_fast_path}") |
| |
| if self.batch_first and is_batched: |
| # make sure that the transpose op does not affect the "is" property |
| if key is value: |
| if query is key: |
| query = key = value = query.transpose(1, 0) |
| else: |
| query, key = [x.transpose(1, 0) for x in (query, key)] |
| value = key |
| else: |
| query, key, value = [x.transpose(1, 0) for x in (query, key, value)] |
| |
| if not self._qkv_same_embed_dim: |
| attn_output, attn_output_weights = F.multi_head_attention_forward( |
| query, key, value, self.embed_dim, self.num_heads, |
| self.in_proj_weight, self.in_proj_bias, |
| self.bias_k, self.bias_v, self.add_zero_attn, |
| self.dropout, self.out_proj.weight, self.out_proj.bias, |
| training=self.training, |
| key_padding_mask=key_padding_mask, need_weights=need_weights, |
| attn_mask=attn_mask, |
| use_separate_proj_weight=True, |
| q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, |
| v_proj_weight=self.v_proj_weight, |
| average_attn_weights=average_attn_weights, |
| is_causal=is_causal) |
| else: |
| attn_output, attn_output_weights = F.multi_head_attention_forward( |
| query, key, value, self.embed_dim, self.num_heads, |
| self.in_proj_weight, self.in_proj_bias, |
| self.bias_k, self.bias_v, self.add_zero_attn, |
| self.dropout, self.out_proj.weight, self.out_proj.bias, |
| training=self.training, |
| key_padding_mask=key_padding_mask, |
| need_weights=need_weights, |
| attn_mask=attn_mask, |
| average_attn_weights=average_attn_weights, |
| is_causal=is_causal) |
| if self.batch_first and is_batched: |
| return attn_output.transpose(1, 0), attn_output_weights |
| else: |
| return attn_output, attn_output_weights |
| |
| def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], |
| query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]: |
| r""" |
| Determine mask type and combine masks if necessary. If only one mask is provided, that mask |
| and the corresponding mask type will be returned. If both masks are provided, they will be both |
| expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or`` |
| and mask type 2 will be returned |
| Args: |
| attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0 |
| key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1 |
| query: query embeddings of shape ``(batch_size, seq_len, embed_dim)`` |
| Returns: |
| merged_mask: merged mask |
| mask_type: merged mask type (0, 1, or 2) |
| """ |
| mask_type: Optional[int] = None |
| merged_mask: Optional[Tensor] = None |
| |
| attn_mask = F._canonical_mask( |
| mask=attn_mask, |
| mask_name="attn_mask", |
| other_type=F._none_or_dtype(key_padding_mask), |
| other_name="key_padding_mask", |
| target_type=query.dtype, |
| check_other=False, |
| ) |
| |
| if attn_mask is not None: |
| mask_type = 0 |
| merged_mask = attn_mask |
| if key_padding_mask is not None: |
| mask_type = 1 |
| merged_mask = key_padding_mask |
| if (attn_mask is not None) and (key_padding_mask is not None): |
| # In this branch query can't be a nested tensor, so it has a shape |
| batch_size, seq_len, _ = query.shape |
| mask_type = 2 |
| key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len) \ |
| .expand(-1, self.num_heads, -1, -1) |
| attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1) |
| merged_mask = attn_mask_expanded + key_padding_mask_expanded |
| return merged_mask, mask_type |
| |
| |
| class PReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{PReLU}(x) = \max(0,x) + a * \min(0,x) |
| |
| or |
| |
| .. math:: |
| \text{PReLU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| ax, & \text{ otherwise } |
| \end{cases} |
| |
| Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single |
| parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, |
| a separate :math:`a` is used for each input channel. |
| |
| |
| .. note:: |
| weight decay should not be used when learning :math:`a` for good performance. |
| |
| .. note:: |
| Channel dim is the 2nd dim of input. When input has dims < 2, then there is |
| no channel dim and the number of channels = 1. |
| |
| Args: |
| num_parameters (int): number of :math:`a` to learn. |
| Although it takes an int as input, there is only two values are legitimate: |
| 1, or the number of channels at input. Default: 1 |
| init (float): the initial value of :math:`a`. Default: 0.25 |
| |
| Shape: |
| - Input: :math:`( *)` where `*` means, any number of additional |
| dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| Attributes: |
| weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). |
| |
| .. image:: ../scripts/activation_images/PReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.PReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['num_parameters'] |
| num_parameters: int |
| |
| def __init__(self, num_parameters: int = 1, init: float = 0.25, |
| device=None, dtype=None) -> None: |
| factory_kwargs = {'device': device, 'dtype': dtype} |
| self.num_parameters = num_parameters |
| super().__init__() |
| self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init)) |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.prelu(input, self.weight) |
| |
| def extra_repr(self) -> str: |
| return 'num_parameters={}'.format(self.num_parameters) |
| |
| |
| class Softsign(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{SoftSign}(x) = \frac{x}{ 1 + |x|} |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Softsign.png |
| |
| Examples:: |
| |
| >>> m = nn.Softsign() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.softsign(input) |
| |
| |
| class Tanhshrink(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Tanhshrink}(x) = x - \tanh(x) |
| |
| Shape: |
| - Input: :math:`(*)`, where :math:`*` means any number of dimensions. |
| - Output: :math:`(*)`, same shape as the input. |
| |
| .. image:: ../scripts/activation_images/Tanhshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanhshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.tanhshrink(input) |
| |
| |
| class Softmin(Module): |
| r"""Applies the Softmin function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range `[0, 1]` and sum to 1. |
| |
| Softmin is defined as: |
| |
| .. math:: |
| \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Args: |
| dim (int): A dimension along which Softmin will be computed (so every slice |
| along dim will sum to 1). |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input, with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmin(dim=1) |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| dim: Optional[int] |
| |
| def __init__(self, dim: Optional[int] = None) -> None: |
| super().__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.softmin(input, self.dim, _stacklevel=5) |
| |
| def extra_repr(self): |
| return 'dim={dim}'.format(dim=self.dim) |
| |
| class Softmax(Module): |
| r"""Applies the Softmax function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range [0,1] and sum to 1. |
| |
| Softmax is defined as: |
| |
| .. math:: |
| \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} |
| |
| When the input Tensor is a sparse tensor then the unspecified |
| values are treated as ``-inf``. |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Args: |
| dim (int): A dimension along which Softmax will be computed (so every slice |
| along dim will sum to 1). |
| |
| .. note:: |
| This module doesn't work directly with NLLLoss, |
| which expects the Log to be computed between the Softmax and itself. |
| Use `LogSoftmax` instead (it's faster and has better numerical properties). |
| |
| Examples:: |
| |
| >>> m = nn.Softmax(dim=1) |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| |
| """ |
| __constants__ = ['dim'] |
| dim: Optional[int] |
| |
| def __init__(self, dim: Optional[int] = None) -> None: |
| super().__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.softmax(input, self.dim, _stacklevel=5) |
| |
| def extra_repr(self) -> str: |
| return 'dim={dim}'.format(dim=self.dim) |
| |
| |
| class Softmax2d(Module): |
| r"""Applies SoftMax over features to each spatial location. |
| |
| When given an image of ``Channels x Height x Width``, it will |
| apply `Softmax` to each location :math:`(Channels, h_i, w_j)` |
| |
| Shape: |
| - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. |
| - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input) |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmax2d() |
| >>> # you softmax over the 2nd dimension |
| >>> input = torch.randn(2, 3, 12, 13) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input: Tensor) -> Tensor: |
| assert input.dim() == 4 or input.dim() == 3, 'Softmax2d requires a 3D or 4D tensor as input' |
| return F.softmax(input, -3, _stacklevel=5) |
| |
| |
| class LogSoftmax(Module): |
| r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional |
| input Tensor. The LogSoftmax formulation can be simplified as: |
| |
| .. math:: |
| \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Args: |
| dim (int): A dimension along which LogSoftmax will be computed. |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [-inf, 0) |
| |
| Examples:: |
| |
| >>> m = nn.LogSoftmax(dim=1) |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| dim: Optional[int] |
| |
| def __init__(self, dim: Optional[int] = None) -> None: |
| super().__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.log_softmax(input, self.dim, _stacklevel=5) |
| |
| def extra_repr(self): |
| return 'dim={dim}'.format(dim=self.dim) |