| import warnings |
| from collections import OrderedDict, abc as container_abcs |
| from itertools import chain, islice |
| import operator |
| |
| import torch |
| from .module import Module |
| from ..parameter import Parameter |
| from torch._jit_internal import _copy_to_script_wrapper |
| |
| from typing import Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union |
| |
| __all__ = ['Container', 'Sequential', 'ModuleList', 'ModuleDict', 'ParameterList', 'ParameterDict'] |
| |
| T = TypeVar('T', bound=Module) |
| |
| |
| # Copied from torch.nn.modules.module, required for a cusom __repr__ for ModuleList |
| def _addindent(s_, numSpaces): |
| s = s_.split('\n') |
| # don't do anything for single-line stuff |
| if len(s) == 1: |
| return s_ |
| first = s.pop(0) |
| s = [(numSpaces * ' ') + line for line in s] |
| s = '\n'.join(s) |
| s = first + '\n' + s |
| return s |
| |
| |
| class Container(Module): |
| |
| def __init__(self, **kwargs: Any) -> None: |
| super().__init__() |
| # DeprecationWarning is ignored by default <sigh> |
| warnings.warn("nn.Container is deprecated. All of it's functionality " |
| "is now implemented in nn.Module. Subclass that instead.") |
| for key, value in kwargs.items(): |
| self.add_module(key, value) |
| |
| |
| class Sequential(Module): |
| r"""A sequential container. |
| Modules will be added to it in the order they are passed in the |
| constructor. Alternatively, an ``OrderedDict`` of modules can be |
| passed in. The ``forward()`` method of ``Sequential`` accepts any |
| input and forwards it to the first module it contains. It then |
| "chains" outputs to inputs sequentially for each subsequent module, |
| finally returning the output of the last module. |
| |
| The value a ``Sequential`` provides over manually calling a sequence |
| of modules is that it allows treating the whole container as a |
| single module, such that performing a transformation on the |
| ``Sequential`` applies to each of the modules it stores (which are |
| each a registered submodule of the ``Sequential``). |
| |
| What's the difference between a ``Sequential`` and a |
| :class:`torch.nn.ModuleList`? A ``ModuleList`` is exactly what it |
| sounds like--a list for storing ``Module`` s! On the other hand, |
| the layers in a ``Sequential`` are connected in a cascading way. |
| |
| Example:: |
| |
| # Using Sequential to create a small model. When `model` is run, |
| # input will first be passed to `Conv2d(1,20,5)`. The output of |
| # `Conv2d(1,20,5)` will be used as the input to the first |
| # `ReLU`; the output of the first `ReLU` will become the input |
| # for `Conv2d(20,64,5)`. Finally, the output of |
| # `Conv2d(20,64,5)` will be used as input to the second `ReLU` |
| model = nn.Sequential( |
| nn.Conv2d(1,20,5), |
| nn.ReLU(), |
| nn.Conv2d(20,64,5), |
| nn.ReLU() |
| ) |
| |
| # Using Sequential with OrderedDict. This is functionally the |
| # same as the above code |
| model = nn.Sequential(OrderedDict([ |
| ('conv1', nn.Conv2d(1,20,5)), |
| ('relu1', nn.ReLU()), |
| ('conv2', nn.Conv2d(20,64,5)), |
| ('relu2', nn.ReLU()) |
| ])) |
| """ |
| |
| _modules: Dict[str, Module] # type: ignore[assignment] |
| |
| @overload |
| def __init__(self, *args: Module) -> None: |
| ... |
| |
| @overload |
| def __init__(self, arg: 'OrderedDict[str, Module]') -> None: |
| ... |
| |
| def __init__(self, *args): |
| super().__init__() |
| if len(args) == 1 and isinstance(args[0], OrderedDict): |
| for key, module in args[0].items(): |
| self.add_module(key, module) |
| else: |
| for idx, module in enumerate(args): |
| self.add_module(str(idx), module) |
| |
| def _get_item_by_idx(self, iterator, idx) -> T: |
| """Get the idx-th item of the iterator""" |
| size = len(self) |
| idx = operator.index(idx) |
| if not -size <= idx < size: |
| raise IndexError('index {} is out of range'.format(idx)) |
| idx %= size |
| return next(islice(iterator, idx, None)) |
| |
| @_copy_to_script_wrapper |
| def __getitem__(self, idx: Union[slice, int]) -> Union['Sequential', T]: |
| if isinstance(idx, slice): |
| return self.__class__(OrderedDict(list(self._modules.items())[idx])) |
| else: |
| return self._get_item_by_idx(self._modules.values(), idx) |
| |
| def __setitem__(self, idx: int, module: Module) -> None: |
| key: str = self._get_item_by_idx(self._modules.keys(), idx) |
| return setattr(self, key, module) |
| |
| def __delitem__(self, idx: Union[slice, int]) -> None: |
| if isinstance(idx, slice): |
| for key in list(self._modules.keys())[idx]: |
| delattr(self, key) |
| else: |
| key = self._get_item_by_idx(self._modules.keys(), idx) |
| delattr(self, key) |
| # To preserve numbering |
| str_indices = [str(i) for i in range(len(self._modules))] |
| self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) |
| |
| @_copy_to_script_wrapper |
| def __len__(self) -> int: |
| return len(self._modules) |
| |
| def __add__(self, other) -> 'Sequential': |
| if isinstance(other, Sequential): |
| ret = Sequential() |
| for layer in self: |
| ret.append(layer) |
| for layer in other: |
| ret.append(layer) |
| return ret |
| else: |
| raise ValueError('add operator supports only objects ' |
| 'of Sequential class, but {} is given.'.format( |
| str(type(other)))) |
| |
| def pop(self, key: Union[int, slice]) -> Module: |
| v = self[key] |
| del self[key] |
| return v |
| |
| def __iadd__(self, other) -> 'Sequential': |
| if isinstance(other, Sequential): |
| offset = len(self) |
| for i, module in enumerate(other): |
| self.add_module(str(i + offset), module) |
| return self |
| else: |
| raise ValueError('add operator supports only objects ' |
| 'of Sequential class, but {} is given.'.format( |
| str(type(other)))) |
| |
| def __mul__(self, other: int) -> 'Sequential': |
| if not isinstance(other, int): |
| raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") |
| elif (other <= 0): |
| raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") |
| else: |
| combined = Sequential() |
| offset = 0 |
| for _ in range(other): |
| for module in self: |
| combined.add_module(str(offset), module) |
| offset += 1 |
| return combined |
| |
| def __rmul__(self, other: int) -> 'Sequential': |
| return self.__mul__(other) |
| |
| def __imul__(self, other: int) -> 'Sequential': |
| if not isinstance(other, int): |
| raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") |
| elif (other <= 0): |
| raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") |
| else: |
| len_original = len(self) |
| offset = len(self) |
| for _ in range(other - 1): |
| for i in range(len_original): |
| self.add_module(str(i + offset), self._modules[str(i)]) |
| offset += len_original |
| return self |
| |
| @_copy_to_script_wrapper |
| def __dir__(self): |
| keys = super().__dir__() |
| keys = [key for key in keys if not key.isdigit()] |
| return keys |
| |
| @_copy_to_script_wrapper |
| def __iter__(self) -> Iterator[Module]: |
| return iter(self._modules.values()) |
| |
| # NB: We can't really type check this function as the type of input |
| # may change dynamically (as is tested in |
| # TestScript.test_sequential_intermediary_types). Cannot annotate |
| # with Any as TorchScript expects a more precise type |
| def forward(self, input): |
| for module in self: |
| input = module(input) |
| return input |
| |
| def append(self, module: Module) -> 'Sequential': |
| r"""Appends a given module to the end. |
| |
| Args: |
| module (nn.Module): module to append |
| """ |
| self.add_module(str(len(self)), module) |
| return self |
| |
| def insert(self, index: int, module: Module) -> 'Sequential': |
| if not isinstance(module, Module): |
| raise AssertionError( |
| 'module should be of type: {}'.format(Module)) |
| n = len(self._modules) |
| if not (-n <= index <= n): |
| raise IndexError( |
| 'Index out of range: {}'.format(index)) |
| if index < 0: |
| index += n |
| for i in range(n, index, -1): |
| self._modules[str(i)] = self._modules[str(i - 1)] |
| self._modules[str(index)] = module |
| return self |
| |
| def extend(self, sequential) -> 'Sequential': |
| for layer in sequential: |
| self.append(layer) |
| return self |
| |
| |
| class ModuleList(Module): |
| r"""Holds submodules in a list. |
| |
| :class:`~torch.nn.ModuleList` can be indexed like a regular Python list, but |
| modules it contains are properly registered, and will be visible by all |
| :class:`~torch.nn.Module` methods. |
| |
| Args: |
| modules (iterable, optional): an iterable of modules to add |
| |
| Example:: |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) |
| |
| def forward(self, x): |
| # ModuleList can act as an iterable, or be indexed using ints |
| for i, l in enumerate(self.linears): |
| x = self.linears[i // 2](x) + l(x) |
| return x |
| """ |
| |
| _modules: Dict[str, Module] # type: ignore[assignment] |
| |
| def __init__(self, modules: Optional[Iterable[Module]] = None) -> None: |
| super().__init__() |
| if modules is not None: |
| self += modules |
| |
| def _get_abs_string_index(self, idx): |
| """Get the absolute index for the list of modules""" |
| idx = operator.index(idx) |
| if not (-len(self) <= idx < len(self)): |
| raise IndexError('index {} is out of range'.format(idx)) |
| if idx < 0: |
| idx += len(self) |
| return str(idx) |
| |
| @_copy_to_script_wrapper |
| def __getitem__(self, idx: Union[int, slice]) -> Union[Module, 'ModuleList']: |
| if isinstance(idx, slice): |
| return self.__class__(list(self._modules.values())[idx]) |
| else: |
| return self._modules[self._get_abs_string_index(idx)] |
| |
| def __setitem__(self, idx: int, module: Module) -> None: |
| idx = self._get_abs_string_index(idx) |
| return setattr(self, str(idx), module) |
| |
| def __delitem__(self, idx: Union[int, slice]) -> None: |
| if isinstance(idx, slice): |
| for k in range(len(self._modules))[idx]: |
| delattr(self, str(k)) |
| else: |
| delattr(self, self._get_abs_string_index(idx)) |
| # To preserve numbering, self._modules is being reconstructed with modules after deletion |
| str_indices = [str(i) for i in range(len(self._modules))] |
| self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) |
| |
| @_copy_to_script_wrapper |
| def __len__(self) -> int: |
| return len(self._modules) |
| |
| @_copy_to_script_wrapper |
| def __iter__(self) -> Iterator[Module]: |
| return iter(self._modules.values()) |
| |
| def __iadd__(self, modules: Iterable[Module]) -> 'ModuleList': |
| return self.extend(modules) |
| |
| def __add__(self, other: Iterable[Module]) -> 'ModuleList': |
| combined = ModuleList() |
| for i, module in enumerate(chain(self, other)): |
| combined.add_module(str(i), module) |
| return combined |
| |
| def __repr__(self): |
| """A custom repr for ModuleList that compresses repeated module representations""" |
| list_of_reprs = [repr(item) for item in self] |
| if len(list_of_reprs) == 0: |
| return self._get_name() + '()' |
| |
| start_end_indices = [[0, 0]] |
| repeated_blocks = [list_of_reprs[0]] |
| for i, r in enumerate(list_of_reprs[1:], 1): |
| if r == repeated_blocks[-1]: |
| start_end_indices[-1][1] += 1 |
| continue |
| |
| start_end_indices.append([i, i]) |
| repeated_blocks.append(r) |
| |
| lines = [] |
| main_str = self._get_name() + '(' |
| for (start_id, end_id), b in zip(start_end_indices, repeated_blocks): |
| local_repr = f"({start_id}): {b}" # default repr |
| |
| if start_id != end_id: |
| n = end_id - start_id + 1 |
| local_repr = f"({start_id}-{end_id}): {n} x {b}" |
| |
| local_repr = _addindent(local_repr, 2) |
| lines.append(local_repr) |
| |
| main_str += '\n ' + '\n '.join(lines) + '\n' |
| main_str += ')' |
| return main_str |
| |
| @_copy_to_script_wrapper |
| def __dir__(self): |
| keys = super().__dir__() |
| keys = [key for key in keys if not key.isdigit()] |
| return keys |
| |
| def insert(self, index: int, module: Module) -> None: |
| r"""Insert a given module before a given index in the list. |
| |
| Args: |
| index (int): index to insert. |
| module (nn.Module): module to insert |
| """ |
| for i in range(len(self._modules), index, -1): |
| self._modules[str(i)] = self._modules[str(i - 1)] |
| self._modules[str(index)] = module |
| |
| def append(self, module: Module) -> 'ModuleList': |
| r"""Appends a given module to the end of the list. |
| |
| Args: |
| module (nn.Module): module to append |
| """ |
| self.add_module(str(len(self)), module) |
| return self |
| |
| def pop(self, key: Union[int, slice]) -> Module: |
| v = self[key] |
| del self[key] |
| return v |
| |
| def extend(self, modules: Iterable[Module]) -> 'ModuleList': |
| r"""Appends modules from a Python iterable to the end of the list. |
| |
| Args: |
| modules (iterable): iterable of modules to append |
| """ |
| if not isinstance(modules, container_abcs.Iterable): |
| raise TypeError("ModuleList.extend should be called with an " |
| "iterable, but got " + type(modules).__name__) |
| offset = len(self) |
| for i, module in enumerate(modules): |
| self.add_module(str(offset + i), module) |
| return self |
| |
| # remove forward alltogether to fallback on Module's _forward_unimplemented |
| |
| |
| class ModuleDict(Module): |
| r"""Holds submodules in a dictionary. |
| |
| :class:`~torch.nn.ModuleDict` can be indexed like a regular Python dictionary, |
| but modules it contains are properly registered, and will be visible by all |
| :class:`~torch.nn.Module` methods. |
| |
| :class:`~torch.nn.ModuleDict` is an **ordered** dictionary that respects |
| |
| * the order of insertion, and |
| |
| * in :meth:`~torch.nn.ModuleDict.update`, the order of the merged |
| ``OrderedDict``, ``dict`` (started from Python 3.6) or another |
| :class:`~torch.nn.ModuleDict` (the argument to |
| :meth:`~torch.nn.ModuleDict.update`). |
| |
| Note that :meth:`~torch.nn.ModuleDict.update` with other unordered mapping |
| types (e.g., Python's plain ``dict`` before Python version 3.6) does not |
| preserve the order of the merged mapping. |
| |
| Args: |
| modules (iterable, optional): a mapping (dictionary) of (string: module) |
| or an iterable of key-value pairs of type (string, module) |
| |
| Example:: |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.choices = nn.ModuleDict({ |
| 'conv': nn.Conv2d(10, 10, 3), |
| 'pool': nn.MaxPool2d(3) |
| }) |
| self.activations = nn.ModuleDict([ |
| ['lrelu', nn.LeakyReLU()], |
| ['prelu', nn.PReLU()] |
| ]) |
| |
| def forward(self, x, choice, act): |
| x = self.choices[choice](x) |
| x = self.activations[act](x) |
| return x |
| """ |
| |
| _modules: Dict[str, Module] # type: ignore[assignment] |
| |
| def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None: |
| super().__init__() |
| if modules is not None: |
| self.update(modules) |
| |
| @_copy_to_script_wrapper |
| def __getitem__(self, key: str) -> Module: |
| return self._modules[key] |
| |
| def __setitem__(self, key: str, module: Module) -> None: |
| self.add_module(key, module) |
| |
| def __delitem__(self, key: str) -> None: |
| del self._modules[key] |
| |
| @_copy_to_script_wrapper |
| def __len__(self) -> int: |
| return len(self._modules) |
| |
| @_copy_to_script_wrapper |
| def __iter__(self) -> Iterator[str]: |
| return iter(self._modules) |
| |
| @_copy_to_script_wrapper |
| def __contains__(self, key: str) -> bool: |
| return key in self._modules |
| |
| def clear(self) -> None: |
| """Remove all items from the ModuleDict. |
| """ |
| self._modules.clear() |
| |
| def pop(self, key: str) -> Module: |
| r"""Remove key from the ModuleDict and return its module. |
| |
| Args: |
| key (str): key to pop from the ModuleDict |
| """ |
| v = self[key] |
| del self[key] |
| return v |
| |
| @_copy_to_script_wrapper |
| def keys(self) -> Iterable[str]: |
| r"""Return an iterable of the ModuleDict keys. |
| """ |
| return self._modules.keys() |
| |
| @_copy_to_script_wrapper |
| def items(self) -> Iterable[Tuple[str, Module]]: |
| r"""Return an iterable of the ModuleDict key/value pairs. |
| """ |
| return self._modules.items() |
| |
| @_copy_to_script_wrapper |
| def values(self) -> Iterable[Module]: |
| r"""Return an iterable of the ModuleDict values. |
| """ |
| return self._modules.values() |
| |
| def update(self, modules: Mapping[str, Module]) -> None: |
| r"""Update the :class:`~torch.nn.ModuleDict` with the key-value pairs from a |
| mapping or an iterable, overwriting existing keys. |
| |
| .. note:: |
| If :attr:`modules` is an ``OrderedDict``, a :class:`~torch.nn.ModuleDict`, or |
| an iterable of key-value pairs, the order of new elements in it is preserved. |
| |
| Args: |
| modules (iterable): a mapping (dictionary) from string to :class:`~torch.nn.Module`, |
| or an iterable of key-value pairs of type (string, :class:`~torch.nn.Module`) |
| """ |
| if not isinstance(modules, container_abcs.Iterable): |
| raise TypeError("ModuleDict.update should be called with an " |
| "iterable of key/value pairs, but got " + |
| type(modules).__name__) |
| |
| if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)): |
| for key, module in modules.items(): |
| self[key] = module |
| else: |
| # modules here can be a list with two items |
| for j, m in enumerate(modules): |
| if not isinstance(m, container_abcs.Iterable): |
| raise TypeError("ModuleDict update sequence element " |
| "#" + str(j) + " should be Iterable; is" + |
| type(m).__name__) |
| if not len(m) == 2: |
| raise ValueError("ModuleDict update sequence element " |
| "#" + str(j) + " has length " + str(len(m)) + |
| "; 2 is required") |
| # modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)] |
| # that's too cumbersome to type correctly with overloads, so we add an ignore here |
| self[m[0]] = m[1] # type: ignore[assignment] |
| |
| # remove forward alltogether to fallback on Module's _forward_unimplemented |
| |
| |
| class ParameterList(Module): |
| r"""Holds parameters in a list. |
| |
| :class:`~torch.nn.ParameterList` can be used like a regular Python |
| list, but Tensors that are :class:`~torch.nn.Parameter` are properly registered, |
| and will be visible by all :class:`~torch.nn.Module` methods. |
| |
| Note that the constructor, assigning an element of the list, the |
| :meth:`~torch.nn.ParameterDict.append` method and the :meth:`~torch.nn.ParameterDict.extend` |
| method will convert any :class:`~torch.Tensor` into :class:`~torch.nn.Parameter`. |
| |
| Args: |
| parameters (iterable, optional): an iterable of elements to add to the list. |
| |
| Example:: |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)]) |
| |
| def forward(self, x): |
| # ParameterList can act as an iterable, or be indexed using ints |
| for i, p in enumerate(self.params): |
| x = self.params[i // 2].mm(x) + p.mm(x) |
| return x |
| """ |
| |
| def __init__(self, values: Optional[Iterable[Any]] = None) -> None: |
| super().__init__() |
| self._size = 0 |
| if values is not None: |
| self += values |
| |
| def _get_abs_string_index(self, idx): |
| """Get the absolute index for the list of modules""" |
| idx = operator.index(idx) |
| if not (-len(self) <= idx < len(self)): |
| raise IndexError('index {} is out of range'.format(idx)) |
| if idx < 0: |
| idx += len(self) |
| return str(idx) |
| |
| @overload |
| def __getitem__(self, idx: int) -> Any: |
| ... |
| |
| @overload |
| def __getitem__(self: T, idx: slice) -> T: |
| ... |
| |
| def __getitem__(self, idx): |
| if isinstance(idx, slice): |
| start, stop, step = idx.indices(len(self)) |
| out = self.__class__() |
| for i in range(start, stop, step): |
| out.append(self[i]) |
| return out |
| else: |
| idx = self._get_abs_string_index(idx) |
| return getattr(self, str(idx)) |
| |
| def __setitem__(self, idx: int, param: Any) -> None: |
| # Note that all other function that add an entry to the list part of |
| # the ParameterList end up here. So this is the only place where we need |
| # to wrap things into Parameter if needed. |
| # Objects added via setattr() are not in the list part and thus won't |
| # call into this function. |
| idx = self._get_abs_string_index(idx) |
| if isinstance(param, torch.Tensor) and not isinstance(param, Parameter): |
| param = Parameter(param) |
| return setattr(self, str(idx), param) |
| |
| def __len__(self) -> int: |
| return self._size |
| |
| def __iter__(self) -> Iterator[Any]: |
| return iter(self[i] for i in range(len(self))) |
| |
| def __iadd__(self, parameters: Iterable[Any]) -> 'ParameterList': |
| return self.extend(parameters) |
| |
| def __dir__(self): |
| keys = super().__dir__() |
| keys = [key for key in keys if not key.isdigit()] |
| return keys |
| |
| def append(self, value: Any) -> 'ParameterList': |
| """Appends a given value at the end of the list. |
| |
| Args: |
| value (Any): value to append |
| """ |
| new_idx = len(self) |
| self._size += 1 |
| self[new_idx] = value |
| return self |
| |
| def extend(self, values: Iterable[Any]) -> 'ParameterList': |
| """Appends values from a Python iterable to the end of the list. |
| |
| Args: |
| values (iterable): iterable of values to append |
| """ |
| # Tensor is an iterable but we never want to unpack it here |
| if not isinstance(values, container_abcs.Iterable) or isinstance(values, torch.Tensor): |
| raise TypeError("ParameterList.extend should be called with an " |
| "iterable, but got " + type(values).__name__) |
| for value in values: |
| self.append(value) |
| return self |
| |
| def extra_repr(self) -> str: |
| child_lines = [] |
| for k, p in enumerate(self): |
| if isinstance(p, torch.Tensor): |
| size_str = 'x'.join(str(size) for size in p.size()) |
| device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) |
| parastr = '{} containing: [{} of size {}{}]'.format( |
| "Parameter" if isinstance(p, Parameter) else "Tensor", |
| p.dtype, size_str, device_str) |
| child_lines.append(' (' + str(k) + '): ' + parastr) |
| else: |
| child_lines.append(' (' + str(k) + '): Object of type: ' + type(p).__name__) |
| |
| tmpstr = '\n'.join(child_lines) |
| return tmpstr |
| |
| def __call__(self, *args, **kwargs): |
| raise RuntimeError('ParameterList should not be called.') |
| |
| |
| class ParameterDict(Module): |
| r"""Holds parameters in a dictionary. |
| |
| ParameterDict can be indexed like a regular Python dictionary, but Parameters it |
| contains are properly registered, and will be visible by all Module methods. |
| Other objects are treated as would be done by a regular Python dictionary |
| |
| :class:`~torch.nn.ParameterDict` is an **ordered** dictionary. |
| :meth:`~torch.nn.ParameterDict.update` with other unordered mapping |
| types (e.g., Python's plain ``dict``) does not preserve the order of the |
| merged mapping. On the other hand, ``OrderedDict`` or another :class:`~torch.nn.ParameterDict` |
| will preserve their ordering. |
| |
| Note that the constructor, assigning an element of the dictionary and the |
| :meth:`~torch.nn.ParameterDict.update` method will convert any :class:`~torch.Tensor` into |
| :class:`~torch.nn.Parameter`. |
| |
| Args: |
| values (iterable, optional): a mapping (dictionary) of |
| (string : Any) or an iterable of key-value pairs |
| of type (string, Any) |
| |
| Example:: |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.params = nn.ParameterDict({ |
| 'left': nn.Parameter(torch.randn(5, 10)), |
| 'right': nn.Parameter(torch.randn(5, 10)) |
| }) |
| |
| def forward(self, x, choice): |
| x = self.params[choice].mm(x) |
| return x |
| """ |
| |
| def __init__(self, parameters: Any = None) -> None: |
| super().__init__() |
| self._keys: Dict[str, None] = {} |
| if parameters is not None: |
| self.update(parameters) |
| |
| def _key_to_attr(self, key: str) -> str: |
| if not isinstance(key, str): |
| raise TypeError("Index given to ParameterDict cannot be used as a key as it is " |
| f"not a string (type is '{type(key).__name__}'). Open an issue on " |
| "github if you need non-string keys.") |
| else: |
| # Use the key as-is so that `.named_parameters()` returns the right thing |
| return key |
| |
| def __getitem__(self, key: str) -> Any: |
| attr = self._key_to_attr(key) |
| return getattr(self, attr) |
| |
| def __setitem__(self, key: str, value: Any) -> None: |
| # Note that all other function that add an entry to the dictionary part of |
| # the ParameterDict end up here. So this is the only place where we need |
| # to wrap things into Parameter if needed. |
| # Objects added via setattr() are not in the dictionary part and thus won't |
| # call into this function. |
| self._keys[key] = None |
| attr = self._key_to_attr(key) |
| if isinstance(value, torch.Tensor) and not isinstance(value, Parameter): |
| value = Parameter(value) |
| setattr(self, attr, value) |
| |
| def __delitem__(self, key: str) -> None: |
| del self._keys[key] |
| attr = self._key_to_attr(key) |
| delattr(self, attr) |
| |
| def __len__(self) -> int: |
| return len(self._keys) |
| |
| def __iter__(self) -> Iterator[str]: |
| return iter(self._keys) |
| |
| def __reversed__(self) -> Iterator[str]: |
| return reversed(list(self._keys)) |
| |
| def copy(self) -> 'ParameterDict': |
| """Returns a copy of this :class:`~torch.nn.ParameterDict` instance. |
| """ |
| # We have to use an OrderedDict because the ParameterDict constructor |
| # behaves differently on plain dict vs OrderedDict |
| return ParameterDict(OrderedDict((k, self[k]) for k in self._keys)) |
| |
| def __contains__(self, key: str) -> bool: |
| return key in self._keys |
| |
| def setdefault(self, key: str, default: Optional[Any] = None) -> Any: |
| """If key is in the ParameterDict, return its value. |
| If not, insert `key` with a parameter `default` and return `default`. |
| `default` defaults to `None`. |
| |
| Args: |
| key (str): key to set default for |
| default (Any): the parameter set to the key |
| """ |
| |
| if key not in self: |
| self[key] = default |
| return self[key] |
| |
| def clear(self) -> None: |
| """Remove all items from the ParameterDict. |
| """ |
| for k in self._keys.copy(): |
| del self[k] |
| |
| def pop(self, key: str) -> Any: |
| r"""Remove key from the ParameterDict and return its parameter. |
| |
| Args: |
| key (str): key to pop from the ParameterDict |
| """ |
| v = self[key] |
| del self[key] |
| return v |
| |
| def popitem(self) -> Tuple[str, Any]: |
| """Remove and return the last inserted `(key, parameter)` pair |
| from the ParameterDict |
| """ |
| k, _ = self._keys.popitem() |
| # We need the key in the _keys to be able to access/del |
| self._keys[k] = None |
| val = self[k] |
| del self[k] |
| return k, val |
| |
| def get(self, key: str, default: Optional[Any] = None) -> Any: |
| r"""Return the parameter associated with key if present. |
| Otherwise return default if provided, None if not. |
| |
| Args: |
| key (str): key to get from the ParameterDict |
| default (Parameter, optional): value to return if key not present |
| """ |
| return self[key] if key in self else default |
| |
| def fromkeys(self, keys: Iterable[str], default: Optional[Any] = None) -> 'ParameterDict': |
| r"""Return a new ParameterDict with the keys provided |
| |
| Args: |
| keys (iterable, string): keys to make the new ParameterDict from |
| default (Parameter, optional): value to set for all keys |
| """ |
| return ParameterDict(((k, default) for k in keys)) |
| |
| def keys(self) -> Iterable[str]: |
| r"""Return an iterable of the ParameterDict keys. |
| """ |
| return self._keys.keys() |
| |
| def items(self) -> Iterable[Tuple[str, Any]]: |
| r"""Return an iterable of the ParameterDict key/value pairs. |
| """ |
| return ((k, self[k]) for k in self._keys) |
| |
| def values(self) -> Iterable[Any]: |
| r"""Return an iterable of the ParameterDict values. |
| """ |
| return (self[k] for k in self._keys) |
| |
| def update(self, parameters: Union[Mapping[str, Any], 'ParameterDict']) -> None: |
| r"""Update the :class:`~torch.nn.ParameterDict` with the key-value pairs from a |
| mapping or an iterable, overwriting existing keys. |
| |
| .. note:: |
| If :attr:`parameters` is an ``OrderedDict``, a :class:`~torch.nn.ParameterDict`, or |
| an iterable of key-value pairs, the order of new elements in it is preserved. |
| |
| Args: |
| parameters (iterable): a mapping (dictionary) from string to |
| :class:`~torch.nn.Parameter`, or an iterable of |
| key-value pairs of type (string, :class:`~torch.nn.Parameter`) |
| """ |
| if not isinstance(parameters, container_abcs.Iterable): |
| raise TypeError("ParametersDict.update should be called with an " |
| "iterable of key/value pairs, but got " + |
| type(parameters).__name__) |
| |
| if isinstance(parameters, (OrderedDict, ParameterDict)): |
| for key, parameter in parameters.items(): |
| self[key] = parameter |
| elif isinstance(parameters, container_abcs.Mapping): |
| for key, parameter in sorted(parameters.items()): |
| self[key] = parameter |
| else: |
| for j, p in enumerate(parameters): |
| if not isinstance(p, container_abcs.Iterable): |
| raise TypeError("ParameterDict update sequence element " |
| "#" + str(j) + " should be Iterable; is" + |
| type(p).__name__) |
| if not len(p) == 2: |
| raise ValueError("ParameterDict update sequence element " |
| "#" + str(j) + " has length " + str(len(p)) + |
| "; 2 is required") |
| # parameters as length-2 list too cumbersome to type, see ModuleDict.update comment |
| self[p[0]] = p[1] # type: ignore[assignment] |
| |
| def extra_repr(self) -> str: |
| child_lines = [] |
| for k, p in self.items(): |
| if isinstance(p, torch.Tensor): |
| size_str = 'x'.join(str(size) for size in p.size()) |
| device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) |
| parastr = '{} containing: [{} of size {}{}]'.format( |
| "Parameter" if isinstance(p, Parameter) else "Tensor", |
| torch.typename(p), size_str, device_str) |
| child_lines.append(' (' + str(k) + '): ' + parastr) |
| else: |
| child_lines.append(' (' + str(k) + '): Object of type: ' + type(p).__name__) |
| tmpstr = '\n'.join(child_lines) |
| return tmpstr |
| |
| def __call__(self, input): |
| raise RuntimeError('ParameterDict should not be called.') |
| |
| def __or__(self, other: 'ParameterDict') -> 'ParameterDict': |
| copy = self.copy() |
| copy.update(other) |
| return copy |
| |
| def __ror__(self, other: 'ParameterDict') -> 'ParameterDict': |
| copy = other.copy() |
| copy.update(self) |
| return copy |
| |
| def __ior__(self, other : 'ParameterDict') -> 'ParameterDict': |
| self.update(other) |
| return self |