| from .module import Module |
| from .. import functional as F |
| |
| from torch import Tensor |
| |
| __all__ = ['PairwiseDistance', 'CosineSimilarity'] |
| |
| class PairwiseDistance(Module): |
| r""" |
| Computes the pairwise distance between input vectors, or between columns of input matrices. |
| |
| Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero |
| if ``p`` is negative, i.e.: |
| |
| .. math :: |
| \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p, |
| |
| where :math:`e` is the vector of ones and the ``p``-norm is given by. |
| |
| .. math :: |
| \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. |
| |
| Args: |
| p (real, optional): the norm degree. Can be negative. Default: 2 |
| eps (float, optional): Small value to avoid division by zero. |
| Default: 1e-6 |
| keepdim (bool, optional): Determines whether or not to keep the vector dimension. |
| Default: False |
| Shape: |
| - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension` |
| - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1 |
| - Output: :math:`(N)` or :math:`()` based on input dimension. |
| If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension. |
| |
| Examples:: |
| >>> pdist = nn.PairwiseDistance(p=2) |
| >>> input1 = torch.randn(100, 128) |
| >>> input2 = torch.randn(100, 128) |
| >>> output = pdist(input1, input2) |
| """ |
| __constants__ = ['norm', 'eps', 'keepdim'] |
| norm: float |
| eps: float |
| keepdim: bool |
| |
| def __init__(self, p: float = 2., eps: float = 1e-6, keepdim: bool = False) -> None: |
| super().__init__() |
| self.norm = p |
| self.eps = eps |
| self.keepdim = keepdim |
| |
| def forward(self, x1: Tensor, x2: Tensor) -> Tensor: |
| return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim) |
| |
| |
| class CosineSimilarity(Module): |
| r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`. |
| |
| .. math :: |
| \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}. |
| |
| Args: |
| dim (int, optional): Dimension where cosine similarity is computed. Default: 1 |
| eps (float, optional): Small value to avoid division by zero. |
| Default: 1e-8 |
| Shape: |
| - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim` |
| - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`, |
| and broadcastable with x1 at other dimensions. |
| - Output: :math:`(\ast_1, \ast_2)` |
| Examples:: |
| >>> input1 = torch.randn(100, 128) |
| >>> input2 = torch.randn(100, 128) |
| >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6) |
| >>> output = cos(input1, input2) |
| """ |
| __constants__ = ['dim', 'eps'] |
| dim: int |
| eps: float |
| |
| def __init__(self, dim: int = 1, eps: float = 1e-8) -> None: |
| super().__init__() |
| self.dim = dim |
| self.eps = eps |
| |
| def forward(self, x1: Tensor, x2: Tensor) -> Tensor: |
| return F.cosine_similarity(x1, x2, self.dim, self.eps) |