| from .module import Module |
| |
| from typing import Tuple, Union |
| from torch import Tensor |
| from torch.types import _size |
| |
| __all__ = ['Flatten', 'Unflatten'] |
| |
| class Flatten(Module): |
| r""" |
| Flattens a contiguous range of dims into a tensor. For use with :class:`~nn.Sequential`. |
| |
| Shape: |
| - Input: :math:`(*, S_{\text{start}},..., S_{i}, ..., S_{\text{end}}, *)`,' |
| where :math:`S_{i}` is the size at dimension :math:`i` and :math:`*` means any |
| number of dimensions including none. |
| - Output: :math:`(*, \prod_{i=\text{start}}^{\text{end}} S_{i}, *)`. |
| |
| Args: |
| start_dim: first dim to flatten (default = 1). |
| end_dim: last dim to flatten (default = -1). |
| |
| Examples:: |
| >>> input = torch.randn(32, 1, 5, 5) |
| >>> # With default parameters |
| >>> m = nn.Flatten() |
| >>> output = m(input) |
| >>> output.size() |
| torch.Size([32, 25]) |
| >>> # With non-default parameters |
| >>> m = nn.Flatten(0, 2) |
| >>> output = m(input) |
| >>> output.size() |
| torch.Size([160, 5]) |
| """ |
| __constants__ = ['start_dim', 'end_dim'] |
| start_dim: int |
| end_dim: int |
| |
| def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None: |
| super().__init__() |
| self.start_dim = start_dim |
| self.end_dim = end_dim |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return input.flatten(self.start_dim, self.end_dim) |
| |
| def extra_repr(self) -> str: |
| return 'start_dim={}, end_dim={}'.format( |
| self.start_dim, self.end_dim |
| ) |
| |
| |
| class Unflatten(Module): |
| r""" |
| Unflattens a tensor dim expanding it to a desired shape. For use with :class:`~nn.Sequential`. |
| |
| * :attr:`dim` specifies the dimension of the input tensor to be unflattened, and it can |
| be either `int` or `str` when `Tensor` or `NamedTensor` is used, respectively. |
| |
| * :attr:`unflattened_size` is the new shape of the unflattened dimension of the tensor and it can be |
| a `tuple` of ints or a `list` of ints or `torch.Size` for `Tensor` input; a `NamedShape` |
| (tuple of `(name, size)` tuples) for `NamedTensor` input. |
| |
| Shape: |
| - Input: :math:`(*, S_{\text{dim}}, *)`, where :math:`S_{\text{dim}}` is the size at |
| dimension :attr:`dim` and :math:`*` means any number of dimensions including none. |
| - Output: :math:`(*, U_1, ..., U_n, *)`, where :math:`U` = :attr:`unflattened_size` and |
| :math:`\prod_{i=1}^n U_i = S_{\text{dim}}`. |
| |
| Args: |
| dim (Union[int, str]): Dimension to be unflattened |
| unflattened_size (Union[torch.Size, Tuple, List, NamedShape]): New shape of the unflattened dimension |
| |
| Examples: |
| >>> input = torch.randn(2, 50) |
| >>> # With tuple of ints |
| >>> m = nn.Sequential( |
| >>> nn.Linear(50, 50), |
| >>> nn.Unflatten(1, (2, 5, 5)) |
| >>> ) |
| >>> output = m(input) |
| >>> output.size() |
| torch.Size([2, 2, 5, 5]) |
| >>> # With torch.Size |
| >>> m = nn.Sequential( |
| >>> nn.Linear(50, 50), |
| >>> nn.Unflatten(1, torch.Size([2, 5, 5])) |
| >>> ) |
| >>> output = m(input) |
| >>> output.size() |
| torch.Size([2, 2, 5, 5]) |
| >>> # With namedshape (tuple of tuples) |
| >>> input = torch.randn(2, 50, names=('N', 'features')) |
| >>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5))) |
| >>> output = unflatten(input) |
| >>> output.size() |
| torch.Size([2, 2, 5, 5]) |
| """ |
| NamedShape = Tuple[Tuple[str, int]] |
| |
| __constants__ = ['dim', 'unflattened_size'] |
| dim: Union[int, str] |
| unflattened_size: Union[_size, NamedShape] |
| |
| def __init__(self, dim: Union[int, str], unflattened_size: Union[_size, NamedShape]) -> None: |
| super().__init__() |
| |
| if isinstance(dim, int): |
| self._require_tuple_int(unflattened_size) |
| elif isinstance(dim, str): |
| self._require_tuple_tuple(unflattened_size) |
| else: |
| raise TypeError("invalid argument type for dim parameter") |
| |
| self.dim = dim |
| self.unflattened_size = unflattened_size |
| |
| def _require_tuple_tuple(self, input): |
| if (isinstance(input, tuple)): |
| for idx, elem in enumerate(input): |
| if not isinstance(elem, tuple): |
| raise TypeError("unflattened_size must be tuple of tuples, " + |
| "but found element of type {} at pos {}".format(type(elem).__name__, idx)) |
| return |
| raise TypeError("unflattened_size must be a tuple of tuples, " + |
| "but found type {}".format(type(input).__name__)) |
| |
| def _require_tuple_int(self, input): |
| if (isinstance(input, (tuple, list))): |
| for idx, elem in enumerate(input): |
| if not isinstance(elem, int): |
| raise TypeError("unflattened_size must be tuple of ints, " + |
| "but found element of type {} at pos {}".format(type(elem).__name__, idx)) |
| return |
| raise TypeError("unflattened_size must be a tuple of ints, but found type {}".format(type(input).__name__)) |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return input.unflatten(self.dim, self.unflattened_size) |
| |
| def extra_repr(self) -> str: |
| return 'dim={}, unflattened_size={}'.format(self.dim, self.unflattened_size) |