| from .module import Module |
| from .utils import _pair, _quadruple, _ntuple |
| from .. import functional as F |
| |
| from torch import Tensor |
| from ..common_types import _size_2_t, _size_4_t, _size_6_t |
| from typing import Sequence, Tuple |
| |
| |
| # TODO: grad_output size asserts in THNN |
| |
| __all__ = ['ConstantPad1d', 'ConstantPad2d', 'ConstantPad3d', 'ReflectionPad1d', 'ReflectionPad2d', |
| 'ReflectionPad3d', 'ReplicationPad1d', 'ReplicationPad2d', 'ReplicationPad3d', 'ZeroPad2d'] |
| |
| class _ConstantPadNd(Module): |
| __constants__ = ['padding', 'value'] |
| value: float |
| padding: Sequence[int] |
| |
| def __init__(self, value: float) -> None: |
| super().__init__() |
| self.value = value |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.pad(input, self.padding, 'constant', self.value) |
| |
| def extra_repr(self) -> str: |
| return 'padding={}, value={}'.format(self.padding, self.value) |
| |
| |
| class ConstantPad1d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in both boundaries. If a 2-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
| |
| Shape: |
| - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
| - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = nn.ConstantPad1d(2, 3.5) |
| >>> input = torch.randn(1, 2, 4) |
| >>> input |
| tensor([[[-1.0491, -0.7152, -0.0749, 0.8530], |
| [-1.3287, 1.8966, 0.1466, -0.2771]]]) |
| >>> m(input) |
| tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000, |
| 3.5000], |
| [ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000, |
| 3.5000]]]) |
| >>> m = nn.ConstantPad1d(2, 3.5) |
| >>> input = torch.randn(1, 2, 3) |
| >>> input |
| tensor([[[ 1.6616, 1.4523, -1.1255], |
| [-3.6372, 0.1182, -1.8652]]]) |
| >>> m(input) |
| tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ConstantPad1d((3, 1), 3.5) |
| >>> m(input) |
| tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]]) |
| |
| """ |
| padding: Tuple[int, int] |
| |
| def __init__(self, padding: _size_2_t, value: float): |
| super().__init__(value) |
| self.padding = _pair(padding) |
| |
| |
| class ConstantPad2d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
| :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = nn.ConstantPad2d(2, 3.5) |
| >>> input = torch.randn(1, 2, 2) |
| >>> input |
| tensor([[[ 1.6585, 0.4320], |
| [-0.8701, -0.4649]]]) |
| >>> m(input) |
| tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) |
| >>> m(input) |
| tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000], |
| [ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320], |
| [ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649], |
| [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]]) |
| |
| """ |
| __constants__ = ['padding', 'value'] |
| padding: Tuple[int, int, int, int] |
| |
| def __init__(self, padding: _size_4_t, value: float) -> None: |
| super().__init__(value) |
| self.padding = _quadruple(padding) |
| |
| |
| class ConstantPad3d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 6-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
| :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
| :math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
| |
| Shape: |
| - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or |
| :math:`(C, D_{out}, H_{out}, W_{out})`, where |
| |
| :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> m = nn.ConstantPad3d(3, 3.5) |
| >>> input = torch.randn(16, 3, 10, 20, 30) |
| >>> output = m(input) |
| >>> # using different paddings for different sides |
| >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5) |
| >>> output = m(input) |
| |
| """ |
| padding: Tuple[int, int, int, int, int, int] |
| |
| def __init__(self, padding: _size_6_t, value: float) -> None: |
| super().__init__(value) |
| self.padding = _ntuple(6)(padding) |
| |
| |
| class _ReflectionPadNd(Module): |
| __constants__ = ['padding'] |
| padding: Sequence[int] |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.pad(input, self.padding, 'reflect') |
| |
| def extra_repr(self) -> str: |
| return '{}'.format(self.padding) |
| |
| |
| class ReflectionPad1d(_ReflectionPadNd): |
| r"""Pads the input tensor using the reflection of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 2-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
| |
| Shape: |
| - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
| - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> m = nn.ReflectionPad1d(2) |
| >>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles") |
| >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) |
| >>> input |
| tensor([[[0., 1., 2., 3.], |
| [4., 5., 6., 7.]]]) |
| >>> m(input) |
| tensor([[[2., 1., 0., 1., 2., 3., 2., 1.], |
| [6., 5., 4., 5., 6., 7., 6., 5.]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ReflectionPad1d((3, 1)) |
| >>> m(input) |
| tensor([[[3., 2., 1., 0., 1., 2., 3., 2.], |
| [7., 6., 5., 4., 5., 6., 7., 6.]]]) |
| |
| """ |
| padding: Tuple[int, int] |
| |
| def __init__(self, padding: _size_2_t) -> None: |
| super().__init__() |
| self.padding = _pair(padding) |
| |
| |
| class ReflectionPad2d(_ReflectionPadNd): |
| r"""Pads the input tensor using the reflection of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
| :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
| >>> m = nn.ReflectionPad2d(2) |
| >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) |
| >>> input |
| tensor([[[[0., 1., 2.], |
| [3., 4., 5.], |
| [6., 7., 8.]]]]) |
| >>> m(input) |
| tensor([[[[8., 7., 6., 7., 8., 7., 6.], |
| [5., 4., 3., 4., 5., 4., 3.], |
| [2., 1., 0., 1., 2., 1., 0.], |
| [5., 4., 3., 4., 5., 4., 3.], |
| [8., 7., 6., 7., 8., 7., 6.], |
| [5., 4., 3., 4., 5., 4., 3.], |
| [2., 1., 0., 1., 2., 1., 0.]]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ReflectionPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| tensor([[[[7., 6., 7., 8., 7.], |
| [4., 3., 4., 5., 4.], |
| [1., 0., 1., 2., 1.], |
| [4., 3., 4., 5., 4.], |
| [7., 6., 7., 8., 7.]]]]) |
| |
| """ |
| padding: Tuple[int, int, int, int] |
| |
| def __init__(self, padding: _size_4_t) -> None: |
| super().__init__() |
| self.padding = _quadruple(padding) |
| |
| |
| class ReflectionPad3d(_ReflectionPadNd): |
| r"""Pads the input tensor using the reflection of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 6-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
| :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
| :math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
| |
| Shape: |
| - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, |
| where |
| |
| :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
| >>> m = nn.ReflectionPad3d(1) |
| >>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2) |
| >>> m(input) |
| tensor([[[[[7., 6., 7., 6.], |
| [5., 4., 5., 4.], |
| [7., 6., 7., 6.], |
| [5., 4., 5., 4.]], |
| [[3., 2., 3., 2.], |
| [1., 0., 1., 0.], |
| [3., 2., 3., 2.], |
| [1., 0., 1., 0.]], |
| [[7., 6., 7., 6.], |
| [5., 4., 5., 4.], |
| [7., 6., 7., 6.], |
| [5., 4., 5., 4.]], |
| [[3., 2., 3., 2.], |
| [1., 0., 1., 0.], |
| [3., 2., 3., 2.], |
| [1., 0., 1., 0.]]]]]) |
| """ |
| padding: Tuple[int, int, int, int, int, int] |
| |
| def __init__(self, padding: _size_6_t) -> None: |
| super().__init__() |
| self.padding = _ntuple(6)(padding) |
| |
| |
| class _ReplicationPadNd(Module): |
| __constants__ = ['padding'] |
| padding: Sequence[int] |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.pad(input, self.padding, 'replicate') |
| |
| def extra_repr(self) -> str: |
| return '{}'.format(self.padding) |
| |
| |
| class ReplicationPad1d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 2-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`) |
| |
| Shape: |
| - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`. |
| - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this") |
| >>> m = nn.ReplicationPad1d(2) |
| >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) |
| >>> input |
| tensor([[[0., 1., 2., 3.], |
| [4., 5., 6., 7.]]]) |
| >>> m(input) |
| tensor([[[0., 0., 0., 1., 2., 3., 3., 3.], |
| [4., 4., 4., 5., 6., 7., 7., 7.]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ReplicationPad1d((3, 1)) |
| >>> m(input) |
| tensor([[[0., 0., 0., 0., 1., 2., 3., 3.], |
| [4., 4., 4., 4., 5., 6., 7., 7.]]]) |
| |
| """ |
| padding: Tuple[int, int] |
| |
| def __init__(self, padding: _size_2_t) -> None: |
| super().__init__() |
| self.padding = _pair(padding) |
| |
| |
| class ReplicationPad2d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
| :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> m = nn.ReplicationPad2d(2) |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3) |
| >>> input |
| tensor([[[[0., 1., 2.], |
| [3., 4., 5.], |
| [6., 7., 8.]]]]) |
| >>> m(input) |
| tensor([[[[0., 0., 0., 1., 2., 2., 2.], |
| [0., 0., 0., 1., 2., 2., 2.], |
| [0., 0., 0., 1., 2., 2., 2.], |
| [3., 3., 3., 4., 5., 5., 5.], |
| [6., 6., 6., 7., 8., 8., 8.], |
| [6., 6., 6., 7., 8., 8., 8.], |
| [6., 6., 6., 7., 8., 8., 8.]]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ReplicationPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| tensor([[[[0., 0., 1., 2., 2.], |
| [0., 0., 1., 2., 2.], |
| [0., 0., 1., 2., 2.], |
| [3., 3., 4., 5., 5.], |
| [6., 6., 7., 8., 8.]]]]) |
| |
| """ |
| padding: Tuple[int, int, int, int] |
| |
| def __init__(self, padding: _size_4_t) -> None: |
| super().__init__() |
| self.padding = _quadruple(padding) |
| |
| |
| class ReplicationPad3d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 6-`tuple`, uses |
| (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`, |
| :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`, |
| :math:`\text{padding\_front}`, :math:`\text{padding\_back}`) |
| |
| Shape: |
| - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, |
| where |
| |
| :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}` |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = nn.ReplicationPad3d(3) |
| >>> input = torch.randn(16, 3, 8, 320, 480) |
| >>> output = m(input) |
| >>> # using different paddings for different sides |
| >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) |
| >>> output = m(input) |
| |
| """ |
| padding: Tuple[int, int, int, int, int, int] |
| |
| def __init__(self, padding: _size_6_t) -> None: |
| super().__init__() |
| self.padding = _ntuple(6)(padding) |
| |
| |
| class ZeroPad2d(ConstantPad2d): |
| r"""Pads the input tensor boundaries with zero. |
| |
| For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`, |
| :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`. |
| - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where |
| |
| :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}` |
| |
| :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}` |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = nn.ZeroPad2d(2) |
| >>> input = torch.randn(1, 1, 3, 3) |
| >>> input |
| tensor([[[[-0.1678, -0.4418, 1.9466], |
| [ 0.9604, -0.4219, -0.5241], |
| [-0.9162, -0.5436, -0.6446]]]]) |
| >>> m(input) |
| tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
| >>> # using different paddings for different sides |
| >>> m = nn.ZeroPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000], |
| [ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000], |
| [ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]]) |
| |
| """ |
| padding: Tuple[int, int, int, int] |
| |
| def __init__(self, padding: _size_4_t) -> None: |
| super().__init__(padding, 0.) |
| |
| def extra_repr(self) -> str: |
| return '{}'.format(self.padding) |